Copper-Catalyzed Semihydrogenation of Alkynes to Z-Alkenes

Kazuhiro Semba* a
Ryohei Kameyama a
Yoshiaki Nakao* b

a Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan
semba.kazuhiko.5n@kyoto-u.ac.jp
nakao.yoshiaki.8n@kyoto-u.ac.jp

b CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

R1
R2
R1 = aryl, alkyl
R2 = aryl, alkyl
cat. [(PPh3)CuCl]4, LiOt-Bu
H2 (5 atm), i-PrOH

76–99% yield >20:1 selectivity

Abstract Copper-catalyzed semihydrogenation of internal alkynes has been developed. The reaction proceeds under an atmosphere of hydrogen (5 atm) at 100 °C in the presence of a readily available [(PPh3)CuCl]4 catalyst to give various Z-alkenes stereoselectively.

Key words alkynes, alkenes, catalysis, copper, hydrogenation

Much attention has been paid to develop copper-catalyzed reduction of unsaturated compounds such as carbonyls, imines, Michael acceptors, and alkynes due to low cost and abundance of copper as well as high chemo-, regio-, and stereoselectivities associated with copper catalysis.1,2 Usually, hydrosilanes are employed as a stoichiometric reducing reagent. In contrast, copper-catalyzed reduction using H2 (hydrogenation) is rare, although it is more atom-efficient than the use of hydrosilanes. Hydrogenation of polar multiple bonds such as aldehydes, ketones, and Michael acceptors has been relatively well-studied with copper catalysis,3 whereas that of nonpolar multiple bonds such as alkynes is limited. To the best of our knowledge, CuO-catalyzed semihydrogenation of terminal alkynes under an atmosphere of H2 (20 atm) has been the only precedent.4

Semihydrogenation of internal alkynes is an efficient method to prepare Z-alkenes, which are versatile building blocks in organic synthesis and often found in biologically active compounds. A variety of heterogeneous catalysts have been developed for this transformation.5 Especially, the Lindlar catalyst is a well-established and effective catalyst for semihydrogenation of alkynes.6 Nevertheless, it often suffers from Z/E isomerization, shift of double bonds, and overhydrogenation to give alkanes. Thus, uptake of H2 must be accurately monitored to control the hydrogenation. To overcome such difficulties, homogeneous catalysts such as rhodium, chromium, palladium, ruthenium, vanadium, and niobium have been developed.7 Here, we report that [(PPh3)CuCl]4,8 a readily available copper complex, efficiently catalyzes semihydrogenation of internal alkynes to give Z-alkenes in a highly stereoselective manner under an atmosphere of H2 (5 atm).

First, we optimized the reaction conditions employing 1-phenyl-1-hexyne (1a) as a model substrate (Table 1). After screening a variety of reaction parameters, semihydrogenation of 1a gave (Z)-1-phenyl-1-hexene [(Z)-2a] selectively in high yield without formation of (E)-1-phenyl-1-hexene [(E)-2a] and hexylbenzene (3a) under the standard conditions: [(PPh3)CuCl]4 (2.0 mol%/Cu), LiOt-Bu (50 mol%), and i-PrOH (1.0 mmol) in toluene at 100 °C for 3 hours under an atmosphere of H2 (5 atm) (Table 1, entry 1).

Table 1 Semihydrogenation of 1a with Various Copper Catalysts

<table>
<thead>
<tr>
<th>Entry</th>
<th>Variation from the standard conditions</th>
<th>Conv. of 1a (%)a</th>
<th>Yield of (Z)-2a + (E)-2a + 3a (%)b</th>
<th>Ratio of (Z)-2a/(E)-2a/3a (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>none</td>
<td>>99</td>
<td>99 (80)c</td>
<td>99:<1:1</td>
</tr>
<tr>
<td>2</td>
<td>run for 12 h</td>
<td>>99</td>
<td>95</td>
<td>94:2:4</td>
</tr>
<tr>
<td>3</td>
<td>CuCl/Ph3P instead of [(PPh3)CuCl]4</td>
<td>>99</td>
<td>95</td>
<td>99:<1:1</td>
</tr>
<tr>
<td>4</td>
<td>CuCl/(o-tol)3 instead of [(PPh3)CuCl]4</td>
<td><5</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

SYNLETT 2015, 26, 318–322
Notably, the selectivity is better than that reported using the Lindlar catalyst \([(Z)-2a/([Z]-2a + (E)-2a + 3a)] = 91\%\). Compound \((Z)-2a\) was isolated in 80\% yield after medium-pressure column chromatography on silica gel (Table 1, entry 1). Prolonging the reaction time to 12 hours slightly decreased the selectivity (Table 1, entry 2). \([(PPh3)CuCl]_4\) generated in situ from CuCl and Ph3P showed reactivity comparable to an isolated one (Table 1, entry 3). CuBr was similarly effective as CuCl. In contrast, other copper(I) salts such as Cu, CuOAc, and CuCN showed activity far less than CuCl. The effects of phosphine ligands are summarized in entries 4–6 (Table 1). The hydrogenation did not proceed under an N2 atmosphere instead of H2, whereas \(\text{Cu}_2\)O was not converted at all under the present reaction conditions (Table 1, entry 10). With 5,7-dodecadiyne \(1k\), \((Z)-5\)-dodecene was obtained selectively (Table 2, entry 11).

The scope of substrates was investigated under the optimized reaction conditions (Table 2).\(^\text{5}\) \(^\text{6}\) In the case of \(1b\), \((Z)-1\)-phenyl-1-propene \(((Z)-2b)\) was obtained in high yield with a small amount of \((E)-1\)-phenyl-1-propene \(((E)-2b)\) and propylene (3b) (Table 2, entry 1). The reduction of \(1\)-phenyl-2-trimethylsilylacetylene (1c) did not proceed (Table 2, entry 2). Diphenylacetylene derivatives \(1d\)–\(g\) were efficiently semihydrogenated to give the corresponding \(Z\)-alkenes (Table 2, entries 3–6). Electron-donating and electron-withdrawing substituents on the phenyl group did not affect the yields and selectivities (Table 2, entries 4–6). The catalytic system was also effective for semihydrogenation of aliphatic alkenes \(1h\) and \(1i\), giving the corresponding \(Z\)-alkenes \((Z)-2h\) and \((Z)-2i\) selectively (Table 2, entries 7 and 8). On the other hand, ynone \(1\) and terminal alkylene \(1k\) were not competent substrates. The reaction of \(1j\) afforded a complex mixture (Table 2, entry 9), whereas \(1k\) was not converted at all under the present conditions (Table 2, entry 10). With 5,7-dodecadiyne \((1l)\), \((Z)-5\)-dodecene was obtained selectively (Table 2, entry 11).

A plausible reaction mechanism is depicted in Scheme 1. Copper hydride \(5\) is generated from heterolytic cleavage of H2 by copper alkoxide \(4\) (step a).\(^\text{10}\) According to the literature, syn addition of \(5\) across an alkyne gives alkynyl copper \(6\) in a stereoselective manner (step b).\(^\text{11}\) Compound \(6\) is protonated by alcohol to afford \((Z)-2\) and regenerate \(4\) (step c).\(^\text{12}\) To gain insights into the proposed reaction mechanism, semihydrogenation of \(1a\) was performed using \(1\)-PrOD...
Table 2 Semihydrogenation of Various Alkynes 1

<table>
<thead>
<tr>
<th>Entry</th>
<th>Alkyne</th>
<th>Conv. of 1 (%)a</th>
<th>Yield of (Z)-2 + (E)-2 + 3 (%)b</th>
<th>Ratio of (Z)-2/(E)-2/3 (%)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph – Me</td>
<td>>99</td>
<td>(78)</td>
<td>96:2:2</td>
</tr>
<tr>
<td>2</td>
<td>Ph – SiMe₃</td>
<td><5</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3d</td>
<td>R¹ = R² = H (1d)</td>
<td>>99</td>
<td>91</td>
<td>96:3:1</td>
</tr>
<tr>
<td>4</td>
<td>R¹ = R² = Me (1e)</td>
<td>>99</td>
<td>99</td>
<td>98:<1:2</td>
</tr>
<tr>
<td>5</td>
<td>R¹ = R² = F (1f)</td>
<td>>99</td>
<td>95</td>
<td>98:1:1</td>
</tr>
<tr>
<td>6e,f</td>
<td>R¹ = C(O)O-i-Pr, R² = H (1g)</td>
<td>>99</td>
<td>52 (95)</td>
<td>99:<1:<1</td>
</tr>
<tr>
<td>7</td>
<td>C₅H₁₁ – C₂H₁₁</td>
<td>>99</td>
<td>76</td>
<td>99:<1:<1</td>
</tr>
<tr>
<td>8</td>
<td>Et – Cl</td>
<td>>99</td>
<td>(93)</td>
<td>99:<1:<1</td>
</tr>
<tr>
<td>9</td>
<td>C₅H₁₁ – OMe</td>
<td>>99</td>
<td>complex mixture</td>
<td>–</td>
</tr>
<tr>
<td>10</td>
<td>C₆H₁₃ – H</td>
<td><5</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>11f</td>
<td>Bu – Bu</td>
<td>>99</td>
<td>(78)d</td>
<td>–</td>
</tr>
</tbody>
</table>

a Determined by GC analysis with n-tridecane as an internal standard.
b Isolated yield. Yields determined by 1H NMR analysis with 1,3,5-trimethoxybenzene as an internal standard are given in parentheses.
c Determined by 1H NMR analysis of a crude product.
d Run at 60 °C for 3 h.
e Run at 80 °C for 3 h.
f Run in 0.30 mmol scale.
g (Z)-5-Dodecene was obtained selectively.
In conclusion, we have established the copper-catalyzed semi-hydrogenation of internal alkynes. The present transformation is catalyzed by a readily available copper complex under an atmosphere of H_2 (5 atm), giving Z-alkenes in high yields and selectivities. This simple catalytic system employing inexpensive metal catalyst can be an alternative to known protocols using a noble-metal catalyst such as the Lindlar catalyst.

Acknowledgment

This work was supported by a Grant-in-Aid for Young Scientists (B) (26810058) from MEXT and the Japan Science and Technology Corporation (CREST, ‘Establishment of Molecular Technology towards the Creation of New Functions’ Area).

Supporting Information

Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1379896.

References and Notes

(9) General Procedure for the Copper-Catalyzed Semihydrogenation

In a glove box, [PPh_3]CuCl_4 (7.2 mg, 5.0 μmol) and i-PrOD (1.0 mmol) were added to a vial in this order. After being stirred for 1 min at r.t., alkyne (2.0 mmol) was added. The resulting mixture was filtered through a pad of silica gel, and the filtrate was concentrated. The residue was purified by medium-pressure column chromatography on silica gel to give (Z)-2.

© Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 26, 318–322
Representative data:

(Z)-2d: The reaction of 1d (180 mg, 1.0 mmol) at 60 °C followed by purification by MPLC (16 g of silica gel and Biotage® SNAP Ultra 10 g; n-hexane) gave the corresponding product (160 mg, 0.91 mmol, 91%) as a mixture of (Z)-2d, (E)-2d, and 3d in a ratio of 95:5:<1 determined by 1H NMR analysis as a colorless oil; Rf = 0.53 (hexane). 1H NMR (CDCl3, 400 MHz): δ = 7.28–7.16 (m, 10 H), 6.60 (s, 2 H); 13C NMR (CDCl3, 101 MHz): δ = 137.2, 130.2, 128.8, 128.2, 127.1. All the resonances of 1H and 13C NMR spectra were consistent with reported values.

(Z)-2g: The reaction of 1g (79 mg, 0.30 mmol) at 80 °C in toluene (0.80 mL) followed by purification by MPLC (16 g of silica gel and Biotage® SNAP Ultra 10 g; n-hexane–EtOAc, 99:1 to 93:7) gave the corresponding product (Z)-2g (42 mg, 0.16 mmol, 52%) as a pale yellow oil; Rf = 0.35 (n-hexane–EtOAc, 95:5). 1H NMR (CDCl3, 400 MHz): δ = 7.90 (d, J = 8.5 Hz, 2 H), 7.25–7.20 (m, 5 H), 6.71 (d, J = 12.2 Hz, 1 H), 6.61 (d, J = 12.2 Hz, 1 H), 5.24 (sept, J = 6.1 Hz, 1 H), 1.36 (d, J = 6.1 Hz, 6 H); 13C NMR (CDCl3, 101 MHz): δ = 165.9, 141.8, 136.7, 132.1, 129.4, 129.31, 128.9, 128.8, 128.7, 128.3, 127.4, 68.3, 21.9. HRMS–APCI (+): m/z [M + H]+ calcd for C18H19O2: 267.1380; found: 267.1375

(10) [(PPh3)CuH]6 was synthesized from Cu(Ot-Bu) and Ph3P, see: (a) Goeden, G. V.; Caulton, K. G. J. Am. Chem. Soc. 1981, 103, 7354. For catalytic activation of H2 by copper salts, see (b) Halpern, J. J. Phys. Chem. 1959, 63, 398.

(12) For a reference on protonation of an alkenyl copper with an alcohol, see ref. 2a.

(13) H–D exchange between copper hydride and alcohols was reported, see ref. 2b and: Lipshutz, B. H.; Servesko, J. M.; Taft, B. R. J. Am. Chem. Soc. 2004, 126, 8352.