Synlett 2015; 26(09): 1217-1221
DOI: 10.1055/s-0034-1379907
letter
© Georg Thieme Verlag Stuttgart · New York

Expedient Copper-Free One-Pot Alkynylation–Cyclization Sequence for the Preparation of 2-Substituted 7-Azaindoles

Timo Lessing
Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany   Email: ThomasJJ.Mueller@uni-duesseldorf.de
,
Fabian Sterzenbach
Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany   Email: ThomasJJ.Mueller@uni-duesseldorf.de
,
Thomas J. J. Müller*
Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany   Email: ThomasJJ.Mueller@uni-duesseldorf.de
› Author Affiliations
Further Information

Publication History

Received: 27 January 2015

Accepted after revision: 05 March 2015

Publication Date:
02 April 2015 (online)


Dedicated to Prof. Dr. Matthias M. Wagner on the occasion of his 50th birthday

Abstract

2-Substituted 7-azaindoles are rapidly and efficiently prepared in a one-pot copper-free alkynylation–cyclization sequence starting from 2-aminopyridyl halides and terminal alkynes. Most importantly the amino nitrogen atom neither requires activation nor protection throughout the sequence.

Supporting Information

 
  • References and Notes


    • For the recent development and synthesis of several kinase inhibitors, see, for example:
    • 1a Chowdhury S, Sessions EH, Pocas JR, Grant W, Schroter T, Lin L, Ruiz C, Cameron MD, Schurer S, LoGrasso P, Bannister TD, Feng Y. Bioorg. Med. Chem. Lett. 2011; 21: 7107
    • 1b Liddle J, Bamborough P, Barker MD, Campos S, Cousins RP, Cutler GJ, Hobbs H, Holmes DS, Ioannou C, Mellor GW, Morse MA, Payne JJ, Pritchard JM, Smith KJ, Tape DT, Whitworth C, Williamson RA. Bioorg. Med. Chem. Lett. 2009; 19: 2504
    • 1c Adams JL, Burgess JL, Chaudhari AM, Copeland RA, Donatelli CA, Drewry DH, Fisher KE, Hamajima T, Hardwicke MA, Huffman WF, Koretke-Brown KK, Lai ZV, McDonald OB, Nakamura H, Newlander KA, Oleykowski CA, Parrish CA, Patrick DR, Plant R, Sarpong MA, Sasaki K, Schmidt SJ, Silva DJ, Sutton D, Tang J, Thompson CS, Tummino PJ, Wang JC, Xiang H, Yang J, Dhanak D. J. Med. Chem. 2010; 53: 3973
    • 1d Chevé G, Bories C, Fauvel B, Picot F, Tible A, Daydé-Cazals B, Loget O, Yasri A. Med. Chem. Commun. 2012; 3: 788
    • 2a Lorenz RR, Tullar BF, Koelsch CF, Archer S. J. Org. Chem. 1965; 30: 2531
    • 2b Herbert R, Wibberley DG. J. Chem. Soc. C 1969; 1505
    • 2c Houlihan WJ, Parrino VA, Uike Y. J. Org. Chem. 1981; 46: 4511
  • 3 For a review summarizing syntheses, see: Mérour J.-Y, Routier S, Suzenet F, Joseph B. Tetrahedron 2013; 69: 476
    • 4a Fang Y.-Q, Yuen J, Lautens M. J. Org. Chem. 2007; 72: 5152
    • 4b Parcerisa J, Romero M, Pujol MD. Tetrahedron 2008; 64: 500
    • 4c Kurhade S, Rajopadhyay V, Avaragolla SV, Koul S, Ramaiah PA, Bhuniya D. Tetrahedron Lett. 2014; 55: 2415
    • 4d Rodriguez AL, Koradin C, Dohle W, Knochel P. Angew. Chem. Int. Ed. 2000; 39: 2488 ; Angew. Chem. 2000, 112, 2607
    • 4e de Mattos MC, Alatorre-Santamaría S, Gotor-Fernández V, Gotor V. Synthesis 2007; 2149
    • 4f Harcken C, Yancey W, Thomson D, Riether D. Synlett 2005; 3121
    • 4g Majumdar KC, Mondal S. Tetrahedron Lett. 2007; 48: 6951
    • 5a Carpita A, Ribecai A, Stabile P. Tetrahedron 2010; 66: 7169
    • 5b Schirok H. J. Org. Chem. 2006; 71: 5538
    • 5c Cottineau B, O’Shea DF. Tetrahedron Lett. 2005; 46: 1935
    • 5d Cottineau B, O’Shea DF. Tetrahedron 2007; 63: 10354
  • 6 Leboho TC, van Vuuren SF, Michael JP, de Koning CB. Org. Biomol. Chem. 2014; 12: 307
    • 7a Nordmann J, Müller TJ. J. Synthesis 2014; 46: 522
    • 7b Nordmann J, Müller TJ. J. Org. Biomol. Chem. 2013; 11: 6556
    • 7c Nordmann J, Breuer N, Müller TJ. J. Eur. J. Org. Chem. 2013; 4303
    • 8a Goehrlich JR, Schmutzler R. Phosphorus, Sulfur Silicon Relat. Elem. 1995; 102: 211
    • 8b Beller M, Hein M, Tewari A, Zapf A. Synthesis 2004; 935
  • 9 Typical Procedure for the Synthesis of 2-Phenyl-1H-pyrrolo[2,3-b]pyridine (4a): In a flame-dried Schlenk tube under nitrogen atmosphere, 3-bromopyridine-2-amine (1a; 173 mg, 1.00 mmol), Pd(PPh3)2Cl2 (17.5 mg, 0.025 mmol), and (1-Ad)2PBn·HBr (22.6 mg, 0.050 mmol) were dissolved in anhyd DMSO (1.50 mL). Phenylacetylene (2a; 122 mg, 1.20 mmol) and DBU (457 mg, 3.00 mmol) were added via syringe and the reaction mixture was stirred in a preheated oil bath at 100 °C until complete conversion of compound 1a (monitored by TLC). Then, KOt-Bu (281 mg, 2.5 mmol) and anhyd DMSO (1.00 mL) were added and the mixture was stirred at 100 °C until completion of the reaction (monitored by TLC). After cooling to r.t., de-ionized H2O (2.00 mL) was added and the aqueous layer was extracted three times with EtOAc. The combined organic phases were first washed twice with de-ionized H2O and then dried with anhyd Na2SO4. The solvents were removed under reduced pressure. The residue was adsorbed onto Celite® and purified by column chromatography on a SNAP 100 g cartridge (EtOAc–n-hexane 33%) using a Biotage SP-1 flash chromatography purification system to give pure compound 4a as a colorless solid; yield: 173 mg (89%); mp 204.3 °C; Rf 0.54 (EtOAc–n-hexane, 1:1). IR (ATR): 1456 (m), 1281 (m), 750 (s), 685 (m), 675 (m), 648 (m), 625 (m) cm–1. 1H NMR (600 MHz, CDCl3): δ = 6.79 (s, 1 H), 7.10 (dd, J = 4.8, 7.7 Hz, 1 H), 7.40 (t, J = 7.4 Hz, 1 H), 7.52 (t, J = 7.6 Hz, 2 H), 7.92 (d, J = 7.8 Hz, 2 H), 7.96 (d, J = 7.7 Hz, 1 H), 8.31 (d, J = 4.8 Hz, 1 H), 12.94 (br s, 1 H). 13C NMR (150 MHz, CDCl3 ): δ = 97.4 (CH), 116.1 (CH), 122.4 (Cquat), 126.0 (CH), 128.2 (CH), 128.7 (CH), 129.0 (CH), 132.5 (Cquat), 139.7 (Cquat), 142.1 (CH), 150.1 (Cquat). MS (EI+, 70 eV): m/z (%) = 195 (14), 194 (100) [M]+, 193 (14), 192 (6), 167 (7), 166 (8), 139 (5), 97 (7), 91 (8). Anal. Calcd for C13H10N2 (194.2): C, 80.39; H, 5.19; N, 14.42. Found: C, 80.16; H, 4.92; N, 14.21.