Synlett 2015; 26(07): 911-914
DOI: 10.1055/s-0034-1380141
letter
© Georg Thieme Verlag Stuttgart · New York

A Novel Nickel-Catalyzed Domino Method for the Direct Synthesis of Symmetrical Disulfides Using Potassium 5-Methyl-1,3,4-oxadiazole-2-thiolate as a Sulfurating Reagent

Mohammad Soleiman-Beigi*
Department of Chemistry, Basic of Sciences Faculty, Ilam University, PO Box 69315-516, Ilam, Iran   Email: SoleimanBeigi@yahoo.com   Email: m.soleimanbeigi@mail.ilam.ac.ir
,
Fariba Mohammadi
Department of Chemistry, Basic of Sciences Faculty, Ilam University, PO Box 69315-516, Ilam, Iran   Email: SoleimanBeigi@yahoo.com   Email: m.soleimanbeigi@mail.ilam.ac.ir
› Author Affiliations
Further Information

Publication History

Received: 07 December 2015

Accepted after revision: 14 January 2015

Publication Date:
18 February 2015 (online)


Abstract

A simple, one pot, efficient, and novel protocol has been developed for the direct synthesis of symmetrical organic disulfides using a domino reaction between an aryl/alkyl halide and potassium 5-methyl-1,3,4-oxadiazole-2-thiolate in the presence of NiCl2 as catalyst. A variety of symmetrical aryl/alkyl disulfides can be obtained in moderate to excellent yields (up to 95%).

Supporting Information

 
  • References and Notes

    • 1a Robbins DW, Hartwig JF. Science 2011; 333: 1423
    • 1b Phapale VB, Cardenas DJ. Chem. Soc. Rev. 2009; 38: 1598
    • 1c Lipshutz BH, Nihan DM, Vinogradova E, Taft BR, Boskovic ZV. Org. Lett. 2008; 10: 4279
    • 1d Desmarets C, Schneider R, Fort Y. J. Org. Chem. 2002; 67: 3029
    • 1e Gao C.-Y, Cao X, Yang L.-M. Org. Biomol. Chem. 2009; 7: 3922
    • 1f Huang C.-Y, Doyle AG. J. Am. Chem. Soc. 2012; 134: 9541
    • 1g Nishimura A, Ohashi M, Ogoshi S. J. Am. Chem. Soc. 2012; 134: 15692
    • 1h Ogata K, Atsuumi Y, Shimada D, Fukuzawa S. Angew. Chem. Int. Ed. 2011; 50: 5896
    • 1i Nielsen DK, Doyle AG. Angew. Chem. Int. Ed. 2011; 50: 6056
    • 1j Binder JT, Cordier CJ, Fu GC. J. Am. Chem. Soc. 2012; 134: 17003
    • 1k Gavryushin A, Kofink C, Manolikakes G, Knochel P. Tetrahedron 2006; 62: 7521
    • 1l Gao C.-Y, Yang L.-M. J. Org. Chem. 2008; 73: 1624
    • 2a Tasker SZ, Standley EA, Jamison TF. Nature (London, UK) 2014; 509: 299
    • 2b Rosen BM, Quasdorf KW, Wilson DA, Zhang N, Resmerita A.-M, Garg NK, Percec V. Chem. Rev. 2011; 111: 1346
    • 3a Baranano D, Mann G, Hartwig JF. Curr. Org. Chem. 1997; 1: 287
    • 3b Cristau HJ, Chabaud B, Chene A, Christol H. Synthesis 1981; 892
    • 3c Gomez-Benitez V, Baldovino-Pantaleon O, Herrera-Alvarez C, Toscano RA, Morales-Morales D. Tetrahedron Lett. 2006; 47: 5059
    • 3d Takagi K. Chem. Lett. 1987; 2221
    • 4a Cremlyn RJ. An Introduction to Organosulfur Chemistry . J. Wiley and Sons; New York: 1996
    • 4b Liang G, Chen J, Chen J, Li W, Chen J, Wu H. Tetrahedron Lett. 2012; 53: 6768
    • 4c Taniguchi N. J. Org. Chem. 2006; 71: 7874
    • 4d Antebi S, Alper H. Tetrahedron Lett. 1985; 26: 2609
    • 4e Nishiyama Y, Maehira K, Nakase J, Sonoda N. Tetrahedron Lett. 2005; 46: 7415
  • 6 Bodanszky M. Principles of Peptide Synthesis 1984; 307
  • 7 Shah ST. A, Khan KM, Fecker M, Voelter W. Tetrahedron Lett. 2003; 44: 6789
    • 8a Kirihara M, Asai Y, Ogawa S, Noguchi T, Hatano A, Hirai Y. Synthesis 2007; 3286
    • 8b Golchoubian H, Hosseinpoor F. Catal. Commun. 2007; 8: 697
    • 8c Silveira CC, Mendes SR. Tetrahedron Lett. 2007; 48: 7469
    • 8d Lenardao EJ, Lara RG, Silva MS, Jacob RG, Perin G. Tetrahedron Lett. 2007; 48: 7668
    • 8e Ali MH, McDermott M. Tetrahedron Lett. 2002; 43: 6271
    • 8f Akdag A, Webb T, Worley SD. Tetrahedron Lett. 2006; 47: 3509
    • 8g Iranpoor N, Zeynizadeh B. Synthesis 1999; 49
    • 8h Tajbakhsh M, Lakouraj MM, Mahalli MS. Monatsh. Chem. 2008; 139: 1453
    • 8i Thurow S, Pereira VA, Martinez DM, Alves D, Perin G, Jacob RG, Lenardão EJ. Tetrahedron Lett. 2011; 52: 640
  • 9 Soleiman-Beigi M, Hemmati M. Appl. Organomet. Chem. 2013; 27: 734
    • 10a Soleiman-Beigi M, Izadi A. J. Chem. 2013; ID 725265; DOI: 10.1155/2013/725265
    • 10b Fructuoso B, Fernando R, Belen B. Tetrahedron Lett. 2009; 50: 6798
    • 11a Arguello JE, Schmidt LC, Penenory AB. Org. Lett. 2003; 5: 4133
    • 11b Firouzabadi H, Iranpoor N, Abbasi M. Tetrahedron Lett. 2010; 51: 50
    • 11c Emerson DW, Bennett BL, Steinberg SM. Synth. Commun. 2005; 35: 631
    • 12a Sonavane SU, Chidambaram M, Almog J, Sasson Y. Tetrahedron Lett. 2007; 48: 6048
    • 12b Wang J.-X, Gao L, Huang D. Synth. Commun. 2002; 32: 963
  • 13 Bandgar BP, Uppalla LS, Sadavarte VS. Tetrahedron Lett. 2001; 42: 6741
  • 14 Li Z, Ke F, Deng H, Xu H, Xiang H, Zhou X. Org. Biomol. Chem. 2013; 11: 2943
  • 15 Soleiman-Beigi M, Mohammadi F. Tetrahedron Lett. 2012; 53: 7028
    • 16a Soleiman-Beigi M, Arzehgar Z, Movassagh B. Synthesis 2010; 392
    • 16b Movassagh B, Soleiman-Beigi M. Synth. Commun. 2010; 40: 3467
    • 16c Movassagh B, Soleiman-Beigi M. Monatsh. Chem. 2009; 140: 409
  • 17 Barba F, Ranz F, Batanero B. Tetrahedron Lett. 2009; 50: 6798
  • 18 Shekhar S, Ryberg P, Hartwig JF, Mathew JS, Blackmond DG, Strieter ER, Buchwald SL. J. Am. Chem. Soc. 2006; 128: 3584
  • 19 Symmetrical Organic Disulfide Synthesis; Typical Experimental Procedure A mixture of iodobenzene (2.0 mmol), potassium 5-methyl-1,3,4-oxadiazole-2-thiolate (1, 0.462 g, 3.0 mmol), NiCl2·6H2O (10 mol%) and KOH (1.0 g, 18 mmol) were added to a flask containing DMF–H2O (2 mL, 20:1) and EG (0.11 mL, 2 mmol). The reaction mixture was heated at 130 °C under atmospheric conditions until completion, monitored by TLC. The reaction mixture was then filtered, the filtrate was evaporated under reduced pressure, CH2Cl2 (20 mL) was added, and the mixture was washed with H2O (2 × 15 mL). The organic layer was dried over anhydrous Na2SO4, filtered, and the solvent was evaporated to give the crude diaryl/alkyl disulfide, which was purified by preparative TLC (silica gel; n-hexane–EtOAc, 20:1). Compound 3d was obtained as a creamy yellow solid in 75% yield; mp 94–97 °C. 1H NMR (400 MHz, CDCl3): δ = 8.41–8.50 (m, 2 H), 7.82–7.95 (m, 4 H), 7.34–7.7 (m, 8 H). 13C NMR (100 MHz, CDCl3): δ = 134.1, 132.6, 130.3, 129.9, 128.6, 128.0, 126.8, 126.6, 125.9, 125.1. MS (EI): m/z = 318 [M+]. Compound 3f was obtained (EtOAc–n-hexane, 1:10) as a light green solid in 89% yield; mp 54–55 °C. 1H NMR (400 MHz, CDCl3): δ = 7.36–7.38 (m, 2 H), 7.22–7.25 (m, 2 H), 6.97–7.00 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 155.4, 129.7, 120.7, 115.4. Compound 3j was obtained (EtOAc–n-hexane, 1:5) as a white solid in 55% yield; mp 41–43 °C. 1H NMR (400 MHz, CDCl3): δ = 7.32 (d, J = 8.8 Hz, 4 H), 6.87 (d, J = 8.8 Hz, 4 H), 3.82 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 159.0, 132.8, 127.4, 114.7, 55.4. Compound 3k was obtained (EtOAc–n-hexane, 1:20) as a white solid in 90% yield; mp 68–70 °C. 1H NMR (400 MHz, CDCl3): δ = 7.28–7.38 (m, 10 H), 3.63 (s, 4 H). 13C NMR (100 MHz, CDCl3): δ = 137.4, 129.5, 128.5, 127.5, 43.3.