Synlett 2015; 26(07): 897-900
DOI: 10.1055/s-0034-1380166
letter
© Georg Thieme Verlag Stuttgart · New York

A Facile Synthesis of 2-Aminobenzoxazoles and 2-Aminobenzimidazoles Using N-Cyano-N-phenyl-p-toluenesulfonamide (NCTS) as an Efficient Electrophilic Cyanating Agent

Mahesh Kasthuri*
Department of Chemistry, GITAM University, Hyderabad Campus, Rudraram Village, Patancheru Mandal, Medak Dist., Telangana State, 502 329, India   Email: mahesh.kasthuri@gmail.com   Email: mahesh.kasthuri@gitam.in
,
H. Sharath Babu
Department of Chemistry, GITAM University, Hyderabad Campus, Rudraram Village, Patancheru Mandal, Medak Dist., Telangana State, 502 329, India   Email: mahesh.kasthuri@gmail.com   Email: mahesh.kasthuri@gitam.in
,
K. Shiva Kumar
Department of Chemistry, GITAM University, Hyderabad Campus, Rudraram Village, Patancheru Mandal, Medak Dist., Telangana State, 502 329, India   Email: mahesh.kasthuri@gmail.com   Email: mahesh.kasthuri@gitam.in
,
Ch. Sudhakar
Department of Chemistry, GITAM University, Hyderabad Campus, Rudraram Village, Patancheru Mandal, Medak Dist., Telangana State, 502 329, India   Email: mahesh.kasthuri@gmail.com   Email: mahesh.kasthuri@gitam.in
,
P. V. Nagendra Kumar
Department of Chemistry, GITAM University, Hyderabad Campus, Rudraram Village, Patancheru Mandal, Medak Dist., Telangana State, 502 329, India   Email: mahesh.kasthuri@gmail.com   Email: mahesh.kasthuri@gitam.in
› Author Affiliations
Further Information

Publication History

Received: 17 November 2014

Accepted after revision: 22 January 2015

Publication Date:
19 February 2015 (online)


Abstract

A facile synthesis of 2-aminobenzoxazole and 2-aminobenz­imidazole derivatives employing a nonhazardous electrophilic cyanating agent: N-cyano-N-phenyl-p-toluenesulfonamide (NCTS) with various substituted 2-aminophenols and benzene-1,2-diamine derivatives in the presence of lithium hexamethyldisilazide (LiHMDS) is described. This novel protocol boasts operational simplicity, shorter reaction time, and simple workup.

 
  • References and Notes

    • 1a Baxter CA, Cleator E, Brands KM. J, Edwards JS, Reamer RA, Sheen FJ, Stewart GW, Strotman NA, Wallace DJ. Org. Process Res. Dev. 2011; 15: 367
    • 1b Okuno T, Kouyama N, Hayashi K. WO 2011096462, 2011
  • 2 Punit PS, Elizabeth AJ, Lisa MR, Stephen AO. Bioorg. Med. Chem. Lett. 2003; 13: 1669
  • 3 Madden J, Dod JR, Godemann R, Kraemer J, Smith M, Biniszkiewicz M, Hallett DJ, Barker J, Dyekjaer DJ, Hesterkamp T. Bioorg. Med. Chem. Lett. 2010; 20: 5329
  • 4 Zhong M, Bui M, Shen W, Baskaran S, Allen DA, Elling RA, Flanagan M, Fung AD, Hanan EJ, Harris SO, Heumann SA, Hoch U, Sheryl NI, Jacobs JW, Stuart L, Lee M, McDowell RS, Oslob JD, Purkey HE, Romanowski MJ, Silverman JA, Tangonan BT, Pietro T, Yang W, Yoburn JC, Yu CH, Zimmerman KM, O’Brien T, Lew W. Bioorg. Med. Chem. Lett. 2009; 19: 5158
  • 5 Armstrong SC, Cozza KL. Psychosomatics 2003; 44: 430
  • 6 Bachmann KA. Curr. Opin. Invest. Drugs 2000; 1: 219
  • 7 Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Liljequist BO, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL. Clin. Microbiol. Infect. 2012; 18: 268
    • 8a Powers JP, Li S, Jaen JC, Liu J, Walker NP. C, Wang Z, Wesche H. Bioorg. Med. Chem. Lett. 2006; 16: 2842
    • 8b Valdez J, Cedillo R, Hernández-Campos A, Yépez L, Hernández-Luis F, Navarrete-Vázquez G, Tapia A, Cortés R, Hernández M, Castillo R. Bioorg. Med. Chem. Lett. 2002; 12: 2221
    • 8c Ella DA. E, Goßnitzer E, Wendelin W. J. Heterocycl. Chem. 1996; 33: 373
    • 9a Saha P, Ramana T, Purkait N, Ali MA, Paul R, Punniyamurthy P. J. Org. Chem. 2009; 74: 8719
    • 9b Wang F, Cai S, Liao Q, Xi C. J. Org. Chem. 2011; 76: 3174
    • 9c Shen G, Bao W. Adv. Synth. Catal. 2010; 352: 981
    • 9d Evindar G, Batey RA. Org. Lett. 2003; 5: 133
    • 10a Narsaiah AV, Reddy AR, Yadav JS. Synth. Commun. 2010; 40: 1750
    • 10b Wan Z.-K, Ousman EF, Papaioannou N, Saiah E. Tetrahedron Lett. 2011; 52: 4149
    • 10c Scheffer U, Strick A, Ludwig V, Peter S, Kalden E, Gobel MW. J. Am. Chem. Soc. 2005; 127: 2211
    • 11a Kawano T, Hirano K, Satoh T, Miura M. J. Am. Chem. Soc. 2010; 132: 6900
    • 11b Monguchi D, Fujiwara T, Furukawa H, Mori A. Org. Lett. 2009; 11: 1607
    • 11c Wang Q, Schreiber SL. Org. Lett. 2009; 11: 5178
    • 11d Matsuda N, Hirano K, Satoh T, Miura M. Org. Lett. 2011; 13: 2860
  • 12 Manjunath L, Ramaiah Prabhu K. J. Org. Chem. 2011; 76: 7938
  • 13 Zhu T.-H, Wang S.-Y, Wang G.-N, Ji S.-J. Chem. Eur. J. 2013; 19: 5850
  • 14 Encyclopedia of Occupational Health and Safety . Vol. 1 and 2. International Labour Offices; Geneva: 1983: 328
    • 15a Kurzer F. J. Chem. Soc. 1949; 1034
    • 15b Kurzer F. J. Chem. Soc. 1949; 3029
  • 16 Anbarasan P, Neumann H, Beller M. Angew. Chem. Int. Ed. 2011; 50: 519
  • 17 Anbarasan P, Neumann H, Beller M. Chem. Eur. J. 2011; 17: 4217
  • 18 Yang Y, Zhang Y, Wang J. Org. Lett. 2011; 13: 5608
  • 19 Typical Experimental Procedure for the Synthesis of 2-Aminobenzaxozole from o-Aminophenol (Table 2, Entry 1) To a solution of o-aminophenol (400 mg, 3.67 mmol) and NCTS (998 mg, 3.67 mmol) in THF (6 mL), 1 M LiHMDS in hexane (3.67 mL, 3.67 mmol) was added and stirred at 5 °C to r.t. for 1 h. Then the reaction mixture was poured in ice water and stirred for 15 min. Then extracted with EtOAc, the organic layer was separated. The organic layer was washed with brine solution. Then organic layer was dried over Na2SO4, filtered, and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography to obtained pure 2-aminobenzaxozole in 90% yield (471 mg).
  • 20 The spectral data of Table 2, entries 1–5 were in accordance with those reported in the literature: Chikhale RV, Pant AM, Menghani SS, Wadibhasme PG, Khedekar PB. S. Afr. J. Chem. 2013; 66: 254
  • 21 Spectral Data for 1f (Table 2, Entry 6) Mp 136–138 °C; Rf = 0.28 (40% EtOAc–cyclohexane). 1H NMR (400 MHz, DMSO-d 6): δ = 6.96 (d, J = 7.65 Hz, 1 H), 7.09 (s, 1 H), 7.12 (m, 2 H), 7.19 (d, J = 7.28 Hz, 1 H), 7.30 (m, 2 H), 7.32 (m, 1 H), 7.36 (s, 2 H, NH2). 13C NMR (100 MHz, DMSO-d 6): δ = 118.2, 121.1, 124.6, 126.5, 128.2, 132.4, 138.2, 142.8, 144.6, 152.1, 168. ESI-MS: m/z = 211.19 [M + H]+. Spectral Data for 1g (Table 2, Entry 7) Mp 168–170 °C; Rf = 0.32 (40% EtOAc–cyclohexane). 1H NMR (400 MHz, DMSO-d 6): δ = 7.22 (d, J = 8.4 Hz, 1 H), 6.90 (d, J = 2.4 Hz, 1 H), 6.76 (s, 1 H), 5.24 (br s, 2 H, NH2), 3.82 (s, 3 H). 13C NMR (100 MHz, DMSO-d 6): δ = 55.6, 96.8, 115.1, 135.8, 150.8, 158.1, 166.2. ESI-MS: m/z = 165.2 [M + H]+.

    • The same procedure was applied for the synthesis of 2-aminobenzimidazole derivatives (Table 2, entries 8–14). The spectral data were in accordance with those reported in the literature:
    • 22a Frei R, Breitbach AS, Blackwell HE. Angew. Chem. Int. Ed. 2012; 51: 5226
    • 22b Hernández-Covarrubias C, Vilchis-Reyes MA, Yépez-Mulia L, Sánchez-Díaz R, Navarrete-Vázquez G, Hernández-Campos A, Castillo R, Hernández-Luis F. Eur. J. Med. Chem. 2012; 52: 193
    • 22c Kolodyazhnaya SN, Simonov AM. Chem. Heterocycl. Compd. 1969; 5: 714
    • 22d Huigens RW. III, Reyes S, Catherine SR, Bunders C, Rogers SA, Steinhauer AT, Melander C. Bioorg. Med. Chem. 2010; 18: 663
    • 22e Titova IA, Vakul’skaya TI, Larina LI, Mizandrontsev MI, Volkov VA, Dolgushin GV, Lopyrev VA. Russ. J. Org. Chem. 2005; 41: 1306