Synlett 2015; 26(09): 1269-1275
DOI: 10.1055/s-0034-1380346
letter
© Georg Thieme Verlag Stuttgart · New York

Investigation of the Synthesis of Benzofuroindolines from N-Hydroxyindoles: An O-Arylation/[3,3]-Sigmatropic Rearrangement Sequence

Terry Tomakinian
Univ Paris Sud and CNRS, Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), UMR8182, Equipe Méthodologie, Synthèse & Molécules Thérapeutiques (MS&MT), Bat. 410, 91405 Orsay, France   Email: guillaume.vincent@u-psud.fr
,
Cyrille Kouklovsky
Univ Paris Sud and CNRS, Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), UMR8182, Equipe Méthodologie, Synthèse & Molécules Thérapeutiques (MS&MT), Bat. 410, 91405 Orsay, France   Email: guillaume.vincent@u-psud.fr
,
Guillaume Vincent*
Univ Paris Sud and CNRS, Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), UMR8182, Equipe Méthodologie, Synthèse & Molécules Thérapeutiques (MS&MT), Bat. 410, 91405 Orsay, France   Email: guillaume.vincent@u-psud.fr
› Author Affiliations
Further Information

Publication History

Received: 22 December 2014

Accepted after revision: 16 February 2015

Publication Date:
01 April 2015 (online)


Dedicated to Dr. Patrick Y. S. Lam

Abstract

We report the demonstration that sensitive N-hydroxyindoles can be O-arylated under transition-metal-free conditions with biaryliodonium salts. The subsequent spontaneous [3,3]-sigmatropic rearrangement delivers benzofuroindolines derived from tryptamine. We also describe the practical synthesis of N-hydroxyindoles by oxidation of indolines with m-CPBA.

Supporting Information

 
  • References and Notes

    • 1a For the isolation of diazonamide A, see: Lindquist N, Fenical W, Van Duyne GD, Cjardy J. J. Am. Chem. Soc. 1991; 113: 2303
    • 1b For structure elucidation, see: Li J, Burgett AW, Esser L, Amezscusa C, Harran PG. Angew. Chem. Int. Ed. 2001; 40: 4770

    • For biological interest, see:
    • 1c Cruz-Monserrate Z, Vervoort HC, Bai R, Newman DJ, Howell SB, Los G, Mullaney JT, Williams MD, Pettit GR, Fenical W, Hamel E. Mol. Pharmacol. 2003; 63: 1273
    • 1d Wang G, Shang L, Burgett AW. G, Harran PG, Wang X. Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 2068
    • 1e Williams NS, Burgett AW. G, Atkins AS, Wang X, Harran PG, McKnight SL. Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 2074

    • For total and formal synthesis, see:
    • 1f Nicolaou KC, Bella M, Chen DY.-K, Huang X, Ling T, Snyder SA. Angew. Chem. Int. Ed. 2002; 41: 3495
    • 1g Nicolaou KC, Bheema Rao P, Hao J, Reddy MV, Rassias G, Huang X, Chen DY.-K, Snyder SA. Angew. Chem. Int. Ed. 2003; 42: 1753
    • 1h Burgett AW. G, Li Q, Wei Q, Harran PG. Angew. Chem. Int. Ed. 2003; 42: 4961
    • 1i Knowles RR, Carpenter J, Blakey SB, Kayano A, Mangion IK, Sinz CJ, MacMillan DW. C. Chem. Sci. 2011; 2: 308
    • 1j Cheung C.-M, Goldberg FW, Magnus P, Russell CJ, Turnbull R, Lynch V. J. Am. Chem. Soc. 2007; 129: 12320
    • 1k Mai C.-K, Sammons MF, Sammakia T. Angew. Chem. Int. Ed. 2010; 49: 2397
    • 2a For the isolation of azonazine, see: Wu Q.-X, Crews MS, Draskovic M, Sohn J, Johnson TA, Tenney K, Valeriote FA, Yao X.-J, Bjeldanes LF, Crews P. Org. Lett. 2010; 12: 4458
    • 2b For total synthesis, see: Zhao J.-C, Yu S.-M, Liu Y, Yao Z.-J. Org. Lett. 2013; 15: 4300

      For reviews on the synthesis of benzofuroindolines, see:
    • 3a Beaud R, Tomakinian T, Denizot N, Pouilhès A, Kouklovsky C, Vincent G. Synlett 2015; 26: 432
    • 3b Ito Y, Ueda M, Miyata O. Heterocycles 2014; 89: 2029
    • 3c Lachia M, Moody CJ. Nat. Prod. Rep. 2008; 25: 227

    • For selected examples, see:
    • 3d Ghosh S, Kinthada LK, Bhunia S, Bisai A. Chem. Commun. 2012; 48: 10132
    • 3e Austin JF, Kim S.-G, Sinz CJ, Xiao W.-J, MacMillan DW. C. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5482
    • 3f Lozano O, Blessley G, Martinez del Campo T, Thompson AL, Giuffredi GT, Bettati M, Walker M, Borman R, Gouverneur V. Angew. Chem. Int. Ed. 2011; 50: 8105
    • 3g Nicolaou KC, Dalby SM, Li S, Suzuki T, Chen DY.-K. Angew. Chem. Int. Ed. 2009; 48: 7616
    • 3h Tian W, Rao Chennamaneni L, Suzuki T, Chen DY.-K. Eur. J. Org. Chem. 2011; 1027
    • 3i Liao L, Shu C, Zhang M, Liao Y, Hu X.-Y, Zhang Y, Wu Z, Yuan W, Zhang X.-M. Angew. Chem. Int. Ed. 2014; 53: 10471
    • 4a Beaud R, Guillot R, Kouklovsky C, Vincent G. Angew. Chem. Int. Ed. 2012; 51: 12546
    • 4b Beaud R, Guillot R, Kouklovsky C, Vincent G. Chem. Eur. J. 2014; 20: 7492
  • 5 Denizot N, Pouilhès A, Cucca M, Beaud R, Guillot R, Kouklovsky C, Vincent G. Org. Lett. 2014; 16: 5752
  • 6 Tomakinian T, Guillot R, Kouklovsky C, Vincent G. Angew. Chem. Int. Ed. 2014; 53: 11881
  • 7 Our hydroarylation does not proceed when nitrogen functionality is present on the C3-side chain of the indole and the generation of 3-iodoindolines requires 2,3-disubstituted indoles.
    • 8a For a review on electrophilic indole derivatives, see: Bandini M. Org. Biomol. Chem. 2013; 11: 5206
    • 8b For a review on dearomatization of indoles, see: Roche SP, Youte Tendoung J.-J, Tréguier B. Tetrahedron 2015; doi: 10.1016/j.tet.2014.06.054
    • 9a Somei M, Kawasaki T, Shimizu K, Fukui Y, Ohta T. Chem. Pharm. Bull. 1991; 39: 1905
    • 9b Somei M, Kawasaki T, Fukui Y, Yamada F, Kobayashi T, Aoyama H, Shinmyo D. Heterocycles 1992; 34: 1877
    • 9c Yamada F, Somei M. Heterocycles 2000; 53: 1255
    • 9d Somei M, Yamada F, Goto A, Hayashi M, Hasegawa M. Heterocycles 2000; 53: 2487
    • 9e Somei M, Yamada F, Kurauchi T, Nagahama Y, Hasegawa M, Yamada K, Teranishi S, Sato H, Kaneko C. Chem. Pharm. Bull. 2001; 49: 87
    • 9f Hayashi T, Peng W, Nakai Y, Yamada K, Somei M. Heterocycles 2002; 57: 421
    • 9g Yamada F, Goto A, Peng W, Hayashi T, Saga Y, Somei M. Heterocycles 2003; 61: 163
    • 9h Yoshino K, Yamada F, Somei M. Heterocycles 2008; 76: 989
    • 9i Yamada K, Tanaka Y, Somei M. Heterocycles 2009; 79: 635
    • 10a Dong W, Jimenez LS. J. Org. Chem. 1999; 64: 2520
    • 10b Wang A, Kuerthe JT, Davies IW. J. Org. Chem. 2003; 68: 9865
    • 10c Wong A, Kuerthe JT, Davies IW, Hughes DL. J. Org. Chem. 2004; 69: 7761
    • 10d Nicolaou KC, Lee SH, Estrada AA, Zak M. Angew. Chem. Int. Ed. 2005; 44: 3736
    • 10e Du Y, Chang J, Reiner J, Zhao K. J. Org. Chem. 2008; 73: 2007
    • 10f Penoni A, Volkman J, Nicholas KM. Org. Lett. 2002; 4: 699
    • 10g Penoni A, Palmisano G, Zhao Y.-L, Houk KN, Volkman J, Nicholas KM. J. Am. Chem. Soc. 2009; 71: 823
    • 10h Tibiletti F, Simonetti M, Nicholas KM, Palmisano G, Parravicini M, Imbesi F, Tollari S, Penoni A. Tetrahedron 2010; 66: 1280
    • 10i Ieronimo G, Mondelli A, Tibiletti F, Maspero A, Palmisano G, Galli S, Tollari S, Masciocchi N, Nicholas KM, Tagliapietra S, Cravotto G, Penoni A. Tetrahedron 2013; 69: 10906
  • 11 The DMDO-mediated oxidation of an indoline into an N-hydroxyindole related to the stephacidins was reported: Hafensteiner BD, Escribano M, Petricci E, Baran PS. Bioorg. Med. Chem. Lett. 2009; 19: 3808
  • 12 General Procedure for the Synthesis of N-Hydroxyindoles 10: Et3SiH (1.12 mL, 7.00 mmol, 2 equiv) was added to a solution of N-acetyltryptamine 11a (700 mg, 3.50 mmol, 1 equiv) in TFA (10 mL) and the mixture was stirred at 60 °C for 24 h. After evaporation of the solvent, the crude product was made basic by adding sat. NaHCO3 under ice cooling and the mixture was extracted with CH2Cl2–MeOH (95:5). The extract was washed with brine, dried over MgSO4, filtered and evaporated under reduced pressure. Purification by column chromatography using EtOAc–MeOH (95:5) afforded the indoline as a yellow oil (528 mg, 2.59 mmol, 74%). This indoline (400 mg, 1.96 mmol, 1 equiv) in MeOH (1.5 mL) was added dropwise to a solution of 70% m-CPBA (675 mg, 3.91 mmol, 1.4 equiv) in MeOH (1.5 mL) at 0 °C. The mixture was then warmed slowly to r.t. and stirred for 12 h. Flash column chromatography purification (100% EtOAc) led to N-hydroxyindole 10a as a white solid (364 mg, 1.67 mmol, 85%); Rf = 0.41 (MeOH–EtOAc, 5:95). N-Hydroxyindole 10a: 1H NMR (250 MHz, MeOD): δ = 8.07 (br s, 1 H), 7.52 (d, J = 9.5 Hz, 1 H), 7.34 (d, J = 9.5 Hz, 1 H), 7.14 (t, J = 6.7 Hz, 1 H), 7.11 (s, 1 H), 7.00 (t, J = 6.6 Hz, 1 H), 3.44 (t, J = 7.2 Hz, 2 H), 2.90 (t, J = 7.3 Hz, 2 H), 1.91 (s, 3 H). 13C NMR (90 MHz, MeOD): δ = 173.4, 135.8, 125.2, 124.5, 122.8, 119.8, 119.6, 109.4, 108.9, 41.7, 26.1, 22.7. IR (KBr): 3250, 3105, 1680, 1619, 1602, 1580, 743 cm–1. HRMS (ESI+): m/z [M + H]+ calcd for [C12H15N2O2]+: 219.1089; found: 219.1128. General Procedure for the Synthesis of Benzofuroindolines 9: To a solution of N-hydroxyindole 10a (50 mg, 0.229 mmol, 1 equiv) in MeOH (1 mL), K2CO3 (45 mg, 0.326 mmol, 1.4 equiv) and then Ph2IOTf 23a (153 mg, 0.356 mmol, 1.5 equiv) were added at 0 °C and the reaction mixture was stirred for 2 h at 0 °C. Flash column chromatography purification (cyclohexane–EtOAc: 60:40 → 40:60) led to 25a (14 mg of pyrroloindoline, 20%) and 70 mg of a (1:0.7:0.4 ratio) mixture of benzofuroindoline 9a (44%), indoles 11a and 24a (36%). Preparative TLC on silica gel (MeOH–EtOAc, 5:95) of the mixture allowed the isolation of benzofuroindoline 9a as a single product. Benzofuroindoline 9a: Rf = 0.37 (MeOH–EtOAc, 5:95). 1H NMR (250 MHz, CDCl3): δ = 7.28 (d, J = 7.2 Hz, 1 H), 7.18 (d, J = 7.3 Hz, 1 H), 7.06 (q, J = 7.9 Hz, 2 H), 6.87 (t, J = 7.0 Hz, 1 H), 6.77 (t, J = 7.2 Hz, 2 H), 6.65 (d, J = 7.9 Hz, 1 H), 6.27 (d, J = 2.5 Hz, 1 H), 5.25 (br s, 1 H, N H), 3.20 (q, J = 6.7 Hz, 2 H), 2.25–2.40 (m, 2 H), 1.79 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 170.7, 158.7, 155.8, 147.5, 136.6, 128.6, 123.0, 122.3, 121.3, 119.8, 115.8, 110.0, 109.8, 101.8, 59.1, 36.6, 35.5, 23.3. IR (NaCl): 3033, 2960, 1691, 1599, 1492, 1426, 1378, 912, 753 cm–1. HRMS (ESI+): m/z [M + H]+ calcd for [C18H19N2O2]+: 295.1441; found: 295.1447.
    • 13a Bartoli G, Palmieri G, Bosco M, Dalpozzo R. Tetrahedron Lett. 1989; 30: 2129
    • 13b Dobbs A. J. Org. Chem. 2001; 66: 638
    • 14a Wang Y, Ye L, Zhang L. Chem. Commun. 2011; 47: 7815
    • 14b Kawade RK, Huang P.-H, Karad SN, Liu R.-S. Org. Biomol. Chem. 2014; 12: 737
  • 15 Wang H.-Y, Anderson LL. Org. Lett. 2013; 15: 3362
    • 16a Sheradasky T. Tetrahedron Lett. 1966; 43: 5225
    • 16b Miyata O, Takeda N, Naito T. Org. Lett. 2004; 6: 1761
    • 16c Contiero F, Jones KM, Matts EA, Porzelle A, Tomkinson NC. O. Synlett 2009; 3003
    • 16d Maimome TJ, Buchwald SL. J. Am. Chem. Soc. 2010; 132: 9990
    • 16e Liu Y, Quian J, Lou S, Xu Z. J. Org. Chem. 2010; 75: 6300
    • 16f Ghosh R, Stridfeldt E, Olofsson B. Chem. Eur. J. 2014; 20: 8888
  • 17 Ueda M, Ito Y, Ichii Y, Kakiuchi M, Shono H, Miyata O. Chem. Eur. J. 2014; 20: 6763
  • 18 Gao H, Xu Q.-L, Keene C, Kürti L. Chem. Eur. J. 2014; 20: 8883
    • 19a Trofimov BA, Schmidt EY, Zorina NV, Senotrusova EY, Protsuk NI, Ushakov IA, Mikhaleva A, Méallet-Renault R, Clavier G. Tetrahedron Lett. 2008; 49: 4362
    • 19b Trofimov BA, Mikhaleva A, Ivanov AV, Shcherbakova VS, Ushakov IA. Tetrahedron 2015; 71: 124
  • 20 Wang H.-Y, Mueller DS, Sachwani RM, Kapadia R, Londino HN, Anderson LL. J. Org. Chem. 2011; 76: 3203
  • 21 Gao H, Ess DH, Yousufuddin M, Kürti L. J. Am. Chem. Soc. 2013; 135: 7081
  • 22 Jalalian N, Petersen TB, Olofsson B. Chem. Eur. J. 2012; 18: 14140
  • 24 De P, ; Nonappa Pandurangan K, Maitra U, Wailes S. Org. Lett. 2007; 9: 2767
    • 25a Petrassi HM, Sharpless KB, Kelly JW. Org. Lett. 2001; 3: 139
    • 25b Wang Z, Zhang J. Tetrahedron Lett. 2005; 46: 4997
  • 26 Lin DW, Masuda T, Biskup MB, Nelson JD, Baran P. J. Org. Chem. 2011; 76: 1013