Synthesis 2015; 47(13): 1844-1850
DOI: 10.1055/s-0034-1380499
paper
© Georg Thieme Verlag Stuttgart · New York

Novel One-Pot Synthetic Method for Propargyl Alcohol Derivatives from Allyl Alcohol Derivatives

Noriki Kutsumura*
a   Department of Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan   Email: tsaito@rs.kagu.tus.ac.jp
b   International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan   Email: kutsumura.noriki.gn@u.tsukuba.ac.jp
,
Mai Inagaki
a   Department of Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan   Email: tsaito@rs.kagu.tus.ac.jp
,
Akito Kiriseko
a   Department of Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan   Email: tsaito@rs.kagu.tus.ac.jp
,
Takao Saito*
a   Department of Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan   Email: tsaito@rs.kagu.tus.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 02 February 2015

Accepted after revision: 02 March 2015

Publication Date:
08 April 2015 (online)


The paper is dedicated to Professor Amos B. Smith, III, on the occasion of his 70th birthday.

Abstract

An efficient one-pot procedure for the synthesis of propargyl alcohol derivatives from allyl alcohol derivatives has been developed. The key to this transformation from a C–C double bond to a C–C triple bond is that hydrogen bromide elimination from 1,2-dibromoalkanes that contain a neighboring oxygen functional group is promoted by the inductive electron-withdrawing effect of the oxygen functional group. In the one-pot reaction, tetrabutylammonium hydroxide was the best base, and the addition of molecular sieves 13X also promoted the reaction.

Supporting Information

 
  • References

    • 1a Treilhou M, Fauve A, Pougny J.-R, Promé J.-C, Veschambre H. J. Org. Chem. 1992; 57: 3203
    • 1b Overman LE, Shim J. J. Org. Chem. 1993; 58: 4662
    • 1c Tsuji J, Mandai T. Angew. Chem. Int. Ed. 1995; 34: 2589
    • 1d Marshall JA, Liao J. J. Org. Chem. 1998; 63: 5962
    • 1e Trost BM, Rudd MT. Org. Lett. 2003; 5: 1467
    • 1f Caldwell JJ, Cameron ID, Christie SD. R, Hay AM, Johnstone C, Kerr WJ, Murray A. Synthesis 2005; 3293
    • 1g Trost BM, Stivala CE, Hull KL, Huang A, Fandrick DR. J. Am. Chem. Soc. 2014; 136: 88
    • 1h Listunov D, Maraval V, Chauvin R, Génisson Y. Nat. Prod. Rep. 2015; 32: 49
    • 2a Pu L. Tetrahedron 2003; 59: 9873
    • 2b Cozzi PG, Hilgraf R, Zimmermann N. Eur. J. Org. Chem. 2004; 4095
    • 2c Lu G, Li Y.-M, Li X.-S, Chan AS. C. Coord. Chem. Rev. 2005; 249: 1736
    • 2d Trost BM, Weiss AH. Adv. Synth. Catal. 2009; 351: 963
    • 2e Chintareddy VR, Wadhwa K, Verkade JG. J. Org. Chem. 2011; 76: 4482
    • 2f Turlington M, Pu L. Synlett 2012; 23: 649
    • 3a Kutsumura N, Niwa K, Saito T. Org. Lett. 2010; 12: 3316
    • 3b Kutsumura N, Matsubara Y, Niwa K, Ito A, Saito T. Eur. J. Org. Chem. 2013; 3337
    • 5a Kutsumura N, Yokoyama T, Ohgiya T, Nishiyama S. Tetrahedron Lett. 2006; 47: 4133
    • 5b Yokoyama T, Kutsumura N, Ohgiya T, Nishiyama S. Bull. Chem. Soc. Jpn. 2007; 80: 578
    • 5c Ohgiya T, Kutsumura N, Nishiyama S. Synlett 2008; 3091
  • 6 Xu H.-J, Zhao Y.-Q, Zhou X.-F. J. Org. Chem. 2011; 76: 8036
    • 7a Lemieux RU, Driguez H. J. Am. Chem. Soc. 1975; 97: 4069
    • 7b Mori K, Ichikawa Y, Kobayashi M, Shibata Y, Yamanaka M, Akiyama T. J. Am. Chem. Soc. 2013; 135: 3964
    • 8a Matloubi Moghaddam F, Emami R. Synth. Commun. 1997; 27: 4073
    • 8b Feng L, Kumar D, Birney DM, Kerwin SM. Org. Lett. 2004; 6: 2059
    • 9a Kutsumura N, Iijima M, Toguchi S, Saito T. Chem. Lett. 2011; 40: 1231
    • 9b Kutsumura N, Toguchi S, Iijima M, Tanaka O, Iwakura I, Saito T. Tetrahedron 2014; 70: 8004

      For 1a, see:
    • 10a Pollex A, Hiersemann M. Org. Lett. 2005; 7: 5705

    • For 1b, see:
    • 10b Fu H, Newcomb M, Wong C.-H. J. Am. Chem. Soc. 1991; 113: 5878

    • For 1c, see:
    • 10c Bartz QR, Miller RF, Adams R. J. Am. Chem. Soc. 1935; 57: 371

    • For 1d, see:
    • 10d Anson CE, Malkov AV, Roe C, Sandoe EJ, Stephenson GR. Eur. J. Org. Chem. 2008; 196

    • For 1e, see:
    • 10e White WN, Gwynn D, Schlitt R, Girard C, Fife W. J. Am. Chem. Soc. 1958; 80: 3271
    • 10f Bujok R, Bieniek M, Masnyk M, Michrowska A, Sarosiek A, Stepowska H, Arlt D, Grela K. J. Org. Chem. 2004; 69: 6894

    • For 1f, see:
    • 10g Wu X.-F, Darcel C. Eur. J. Org. Chem. 2009; 1144

    • For 1g, see: ref. 3. For 1j, see: ref. 5b. For 1m and 1n, see:
    • 10h Goux C, Massacret M, Lhoste P, Sinou D. Organometallics 1995; 14: 4585

    • For 1r, see:
    • 10i Sreedhar E, Venkanna A, Chandramouli N, Babu KS, Rao JM. Eur. J. Org. Chem. 2011; 1078

      For 4a, see:
    • 11a Kwart H, Sarner SF, Slutsky J. J. Am. Chem. Soc. 1973; 95: 5234

    • For 4b, see:
    • 11b Guanti G, Perrozzi S, Riva R. Tetrahedron: Asymmetry 2002; 13: 2703

    • For 4c, see:
    • 11c Montevecchi PC, Navacchia ML. J. Org. Chem. 1998; 63: 537

    • For 4d, see:
    • 11d Olivero S, Clinet JC, Duñach E. Tetrahedron Lett. 1995; 36: 4429

    • For 4e, see:
    • 11e Ho I.-T, Chu J.-H, Chung W.-S. Eur. J. Org. Chem. 2011; 1472

    • For 4f, see:
    • 11f Ohkubo M, Mochizuki S, Sano T, Kawaguchi Y, Okamoto S. Org. Lett. 2007; 9: 773

    • For 4g, see:
    • 11g Magnus P, Matthews KS. J. Am. Chem. Soc. 2005; 127: 12476

    • For 4j, see: ref. 3. For 4m, see: ref. 5b. For 4n, see: ref. 4b. For 4r, see:
    • 11h Banfi L, Guanti G, Basso A. Eur. J. Org. Chem. 2000; 939
  • 12 For the synthesis, see the Supporting Information.