Synlett 2015; 26(09): 1263-1268
DOI: 10.1055/s-0034-1380503
letter
© Georg Thieme Verlag Stuttgart · New York

Environmentally Sustainable Magnetic Solid Sulfonic Acid: An Efficient and Reusable Catalyst for the Pechmann Reaction

Akbar Mobaraki
Department of Chemistry, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran   Email: bmovass1178@yahoo.com
,
Shahriar Yasham
Department of Chemistry, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran   Email: bmovass1178@yahoo.com
,
Barahman Movassagh*
Department of Chemistry, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran   Email: bmovass1178@yahoo.com
› Author Affiliations
Further Information

Publication History

Received: 22 December 2014

Accepted after revision: 25 February 2015

Publication Date:
24 March 2015 (online)


Abstract

An environmentally benign sulfonic acid nanocomposite based on Fe3O4@SiO2 core–shell magnetic nanoparticles, Fe3O4@SiO2@Et-PhSO3H, was prepared and the acidity and utility of the catalyst were explored for the synthesis of a diverse range of coumarin derivatives under solvent-free conditions. The catalyst shows potential for scale up in the synthesis of coumarins with high purity and was easily separated by using an external magnet. The recovered catalyst was reused in seven cycles without any significant loss of activity.

Supporting Information

 
  • References and Notes

  • 1 Melero JA, van Grieken R, Morales G. Chem. Rev. 2006; 106: 3790
  • 2 Ertl G, Knozinger H, Schuth F, Weitkamp J. Handbook of ­Heterogeneous Catalysis . Wiley-VCH; Weinheim: 2008
  • 3 Ding K, Uozumi Y. Handbook of Asymmetric Heterogeneous Catalysis . Wiley-VCH; Weinheim: 2008
  • 4 Cornils B, Herrmann WA, Horvath IT, Leitner W, Mecking S, Olivier-Bourbigou H, Vogt D. Multiphase Homogeneous Catalysis . Wiley-VCH; Weinheim: 2005
  • 5 Blaser HU, Schmidt E. Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions. Wiley-VCH; Weinheim: 2004
    • 6a Fatiadi AJ. Synthesis 1987; 85
    • 6b Menger FM, Lee C. J. Org. Chem. 1979; 44: 3446
    • 6c Smith K. Solid Supports and Catalysis in Organic Synthesis . Ellis Horwood and PTR Prentice Hall; New York: 1992
    • 6d Laszlo P. Comprehensive Organic Synthesis . Vol. 7. Pergamon; New York: 1991
  • 7 Cole-Hamilton DJ, Tooze RP. Catalyst Separation, Recovery and Recycling: Chemistry and Process Design. Springer; Berlin: 2006
  • 8 Gladysz JA. Chem. Rev. 2002; 102: 3215
  • 9 Wang D, Astruc D. Chem. Rev. 2014; 114: 6949
    • 10a Mobaraki A, Movassagh B, Karimi B. ACS Comb. Sci. 2014; 16: 352
    • 10b Mobaraki A, Movassagh B, Karimi B. Appl. Catal., A: Gen. 2014; 472: 123
    • 10c Wang S, Zhang Z, Liu B, Li J. Catal. Sci. Technol. 2013; 3: 2104
    • 10d Pourjavadi A, Hosseini SH, Doulabi M, Fakoorpoor SM, Seidi F. ACS Catal. 2012; 2: 1259
    • 10e Zhang Q, Su H, Luo J, We YA. Green Chem. 2012; 14: 201
    • 10f Naeimi H, Mohamadabadi S. Dalton Trans. 2014; 12967
    • 10g Gill CS, Price BA, Jones CW. J. Catal. 2007; 251: 145
  • 11 Lacy A, O’Kennedy R. Curr. Pharm. Des. 2004; 10: 3797
  • 12 Borges F, Roleira F, Milhazes N, Santana L, Uriarte E. Curr. Med. Chem. 2005; 12: 887
  • 13 Riveiro ME, De Kimpe N, Moglioni A, Vazquez R, Monczor F, Shayo C, Davio C. Curr. Med. Chem. 2010; 17: 1325
    • 14a Costova IN, Nikolov NM, Chipilska LN. J. Ethnopharm. 1993; 39: 205
    • 14b Li B, Pai R, Di M, Aiello D, Barnes MH, Butler MM. J. Med. Chem. 2012; 55: 10896
    • 14c Liu XH, Fan JC, Liu Y, Shang ZC. J. Zhejiang Univ. Sci. B. 2008; 9: 990
    • 14d Bravic G, Gaultier J, Hauw C. Acad. Sci. Paris 1968; 267: 1790
    • 14e Wang CJ, Hsieh YJ, Chu CY, Lin YL, Tseng TH. Cancer Lett. 2002; 183: 163
    • 14f Taniguchi M, Xiao YQ, Liu XH, Yabu A, Hada Y, Guo LQ, Yamazoe Y, Baba K. Chem. Pharm. Bull 1999; 47: 713
    • 14g Nettleton DE. Drugs Future 1996; 34: 1257
    • 14h Jacquot Y, Rojaz C, Refouvelet B, Robert JF, Leclercq G, Xicluna A. Med. Chem. 2003; 3: 387
    • 14i Noeldner M, Hauer H, Chatterjee SS. Drugs Future 1996; 21: 779
    • 14j Rappl C, Barbier P, Bourgarel-Rey V, Gregoire C, Gilli R, Carre M, Combes S, Finet J.-P, Peyrot V. Biochemistry 2006; 45: 9210
    • 14k Zhao H, Donnelly AC, Kusuma BR, Brandt GL. E, Brown D, Rajewski RA, Vielhauer G, Holzbeierlein J, Cohen MS, Blagg BS. J. J. Med. Chem. 2011; 54: 3839
    • 14l Benigni R, Bossa C. Chem. Rev. 2011; 111: 2507
    • 14m Stefanachi A, Favia AD, Nicolotti Q, Leonetti F, Pisani L, Catto M, Zimmer C, Hartmann RW, Carotti A. J. Med. Chem. 2011; 54: 1613
    • 15a von Pechmann H. Ber. Dtsch. Chem. Ges. 1894; 27: 1888
    • 15b Narasimahan NS, Mali RS, Barve MV. Synthesis 1979; 906
    • 15c Yavari I, Hekmat-Shoar R, Zonouzi A. Tetrahedron Lett. 1998; 39: 2391
    • 15d Yamamoto Y, Kirai N. Org. Lett. 2008; 10: 5513
    • 15e Vadola PA, Sames D. J. Org. Chem. 2012; 77: 7804
    • 15f Kim S, Kang D, Lee CH, Lee PH. J. Org. Chem. 2012; 77: 6530
    • 15g Henry CE, Kwon O. Org. Lett. 2007; 9: 3069
  • 16 Potdar MK, Rasalkar MS, Mohile SS, Salunkhe MM. J. Mol. Catal. A: Chem 2005; 235: 249
    • 17a Russel A, Frye JR. Org. Synth. 1941; 21: 22
    • 17b Woods LL, Sapp J. J. Org. Chem. 1962; 27: 3703
    • 17c Bulut M, Erk C. Dyes Pigm. 1996; 30: 99
    • 18a Daru J, Stirling A. J. Org. Chem. 2011; 76: 8749
    • 18b De SK. Synlett 2005; 1231
    • 18c Sharma GV. M, Reddy JJ, Lakshmi PS, Krishna PR. Tetrahedron Lett. 2005; 46: 6119
  • 19 Sabou R, Hoelderich WF, Ramprasad D, Weinand R. J. Catal. 2005; 232: 34
  • 20 Maheswara M, Siddaiah V, Lakishmi G, Damu V, Rao YK, Rao CV. J. Mol. Catal. A: Chem. 2006; 255: 49
  • 21 Dhakshinamoorthy A, Opanasenko M, Cejka J, Garcia H. Adv. Synth. Catal. 2013; 355: 247
  • 22 Gu Y, Zhang J, Duan Z, Deng Y. Adv. Synth. Catal. 2005; 347: 512
  • 23 Ghaffari Khaligh N. Catal. Sci. Technol. 2012; 2: 1633
  • 24 Wang A, Liu X, Su Z, Jing H. Catal. Sci. Technol. 2014; 4: 71
  • 25 Opanasenko M, Dhakshinamoorthy A, Cejka J, Garcia H. ChemCatChem 2013; 5: 1553
  • 26 Shi XL, Xing X, Lin H, Zhang W. Adv. Synth. Catal. 2014; 356: 2349
  • 27 Zhang Y, Zhu A, Li Q, Li L, Zhao Y, Wang J. RSC Adv. 2014; 4: 22946
  • 28 Opanasenko M, Shamzhy M, Cejka J. ChemCatChem 2013; 5: 1024
  • 29 Ahmed AI, El-Hakam SA, Khder AS, Yazeed WS. A. E. J. Mol. Catal. A: Chem. 2013; 366: 99
  • 30 Kamiya Y, Sakata S, Yashinaga Y, Ohnishi R, Okuhara T. Catal. Lett. 2004; 94: 45
  • 31 Song SX, Kydd RA. J. Chem. Soc., Faraday Trans. 1998; 94: 1333
  • 32 Palaniappan S, Shekhar RC. J. Mol. Catal. A: Chem. 2004; 209: 117
  • 33 General Synthesis of Coumarins by Pechmann Reaction: A mixture of phenol (2 mmol), β-keto ester (2 mmol), and catalyst (0.3 mol%) was heated and magnetically stirred at 120 °C for the appropriate time under solvent-free conditions (Table 4). In many cases, the coumarins separated out as a solid mass on the inner wall of the flask at the end of the reaction. Upon completion of the reaction (monitored by TLC), the reaction mixture was cooled to room temperature, hot EtOH (5 mL) was added, and the mixture was stirred for 15 min. The catalyst was removed from the reaction mixture by magnetic separation. The ethanolic solution was evaporated, the residue was poured onto crushed ice, and the resulting crude product was filtered off and recrystallized from ethanol to afford pure coumarin.