Synlett 2015; 26(10): 1403-1407
DOI: 10.1055/s-0034-1380653
letter
© Georg Thieme Verlag Stuttgart · New York

Silica-Supported Glyoxylic Acid: A Traceless, Green Approach to the Groebke–Blackburn–Bienymé Reaction

Pritam Surkar
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, India   Email: anujs77@gmail.com
,
Tanpreet Kaur
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, India   Email: anujs77@gmail.com
,
Anuj Sharma*
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, India   Email: anujs77@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 23 February 2015

Accepted after revision: 30 March 2015

Publication Date:
04 May 2015 (online)


Abstract

The first example of a formaldehyde equivalent covalently immobilized onto a silica surface is presented in a prototypical regioselective Groebke–Blackburn–Bienymé (GBB) reaction to afford 2-unsubstituted-3-aminoimidazo[1,2-a]heterocycles. The presence of a solid support facilitates the reaction without a solvent under microwave irradiation in good yields.

Supporting Information

 
  • References and Notes

    • 1a Isambert N, Duque MM. S, Plaquevent J.-C, Genisson Y, Rodriguez J, Constantieux T. Chem. Soc. Rev. 2011; 40: 1347
    • 1b Moulin A, Bibian M, Blayo A.-L, Habnouni SE, Martinez J, Fehrentz J.-A. Chem. Rev. 2010; 110: 1809
    • 2a Yang X, Odelius K, Hakkarainen M. ACS Sustainable Chem. Eng. 2014; 2: 2198
    • 2b Spencer J, Baltus CB, Patel H, Press NJ, Callear SK, Male L, Coles SJ. ACS Comb. Sci. 2011; 13: 24
    • 2c Anasta PT, Warner JC. Green Chemistry: Theory and Practical . Oxford University Press; New York: 2000
  • 3 Khan AT, Choudhury LH, Ghosh S. J. Mol. Catal. A: Chem. 2006; 255: 230
  • 4 Rostamnia S, Hassankhani A, Hossieni HG, Gholipour B, Xin H. J. Mol. Catal. A: Chem. 2014; 395: 463
  • 5 Polshettiwar V, Len C, Fihri A. Coord. Chem. Rev. 2009; 253: 2599
  • 6 Hwu JR, Jain ML, Tsai F.-Y, Tsay S.-C, Balakumar A, Hakimelahi GH. J. Org. Chem. 2000; 65: 5077
  • 7 Karami B, Farahi M, Bazrafshan M, Khodabakhshi S. S. Afr. J. Chem. 2014; 67: 109
  • 8 Multicomponent Reactions . Zhu J, Bienayme H. Wiley-Interscience; New York: 2005
    • 9a Ganem B. Acc. Chem. Res. 2009; 42: 463
    • 9b Pan SC, List B. Angew. Chem. Int. Ed. 2008; 47: 3622
    • 9c Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
    • 9d Wilson RM, Stockdill JL, Wu X, Li X, Vadola PA, Park PK, Wang P, Danishefsky SJ. Angew. Chem. Int. Ed. 2012; 51: 2834
  • 10 Devi N, Rawal RK, Singh V. Tetrahedron 2014; 1
    • 11a Wu Z, Fraley ME, Bilodeau MT, Kaufman ML, Tasber ES, Balitza AE, Hartman GD, Coll KE, Rickert K, Shipman J, Shi B, Lerenzino LS, Thomas KA. Bioorg. Med. Chem. 2004; 14: 909
    • 11b Baviskar AT, Madaan C, Preet R, Mohapatra P, Jain V, Agarwal A, Guchhait SK, Kundu CN, Banerjee UC, Bharatam PV. J. Med. Chem. 2011; 54: 5013
    • 11c Gueiffier A, Mavel S, Lhassani M, Elhakmaoui A, Snoeck R, Andrei G, Chavignon O, Teulade J.-C, Witvrouw M, Balzarini J, Clercq ED, Chapat J.-P. J. Med. Chem. 1998; 41: 5108
  • 13 Lyon MA, Kercher TS. Org. Lett. 2004; 26: 4989
  • 14 Karade HN, Sathe M, Kaushik MP. Molecules 2007; 12: 1341
  • 15 Eisen MS, Tyvon K. US 0230346 A1, 2010
  • 16 Vegad H, Lobell M, Bornemann S, Crout DH. G. J. Chem. Soc., Perkin Trans. 1 2000; 2317
  • 17 Preparation of Glyoxyloyl Chloride (GA-Cl) Glyoxylic acid monohydrate (4.0 g, 44 mmol) was dissolved in excess SOCl2 (12 mL, 164 mmol), and the mixture was heated to reflux for 48 h. Excess SOCl2 was then removed under reduced pressure to furnish glyoxaloyl chloride as gum in 92% yield (3.7 g). Preparation of Si-Glyoxylate (Si-GA) Activated silica (15 g) was suspended in MeCN (30 mL), and glyoxyloyl chloride (3.7 g, 40 mmol) was added. The reaction mixture was cooled in an ice-bath at 0–5 °C, and NaH (1.2 g, 50 mmol) was added portionwise. The reaction mixture was warmed to r.t. and stirred for 12 h. After this time, the solvent was removed under reduced pressure, and the solid was washed with MeOH and dried to obtain 12 g of Si-GA. Further analysis of the Si-GA via complexation with DNPH and analysis with HPLC indicated an incorporation of 0.6 mmol/g. The supported reagent was stored at r.t. in a desiccator. One-Pot Reaction Procedure for the GBB Reaction Si-GA (1, 1.7 g, 1.0 mmol), 2-aminoazine 2ae (1.0 mmol) and isonitrile 3ac (1.2 mmol) were mixed in CH2Cl2 (1 mL), and then the solvent was removed under reduced pressure. The residue was irradiated for 5 min under MW irradiation. After completion of the reaction (TLC), CH2Cl2 was added to the solid and the mixture filtered. The solvent was removed under reduced pressure, and the residue was purified either by recrystallization or by column chromatography. N-tert-Butyl-6-methylimidazo[1,2-a]pyridin-3-amine (4a) Yield 74%; colorless crystals; mp 91–93 °C. IR (4000–600 cm–1): νmax = 3272, 2971, 1551, 1360, 1335, 800 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.16 (s, 9 H), 2.30 (s, 3 H), 2.68 (s, 1 H), 6.93 (d,J= 9.1 Hz, 1 H), 7.24 (s, 1 H), 7.38 (d, J = 9.14 Hz, 1 H), 7.95 (s, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 18.4, 29.6, 53.8, 116.8, 120.6, 120.9, 126.7, 128.6, 141.9 ppm. ESI-HRMS: m/z calcd for C12H17N3: 204.1495 [M + H]+; found: 204.1511 [M + H]+. N-(2,6-Dimethylphenyl)-6-methylimidazo[1,2-a]pyridin-3-amine (4c) Yield 75%; colorless crystals; mp 156–158 °C. IR (4000–600 cm–1): νmax = 3237, 2881, 2363, 1659, 1414, 1383, 1227, 780, 710, 645 cm–1. 1H NMR (400 MHz, CDCl3): δ = 2.06 (s, 6 H), 2.34 (s, 3 H), 4.99 (br s, 1 H), 6.89 (t, 1 H, J = 8.2 Hz), 7.00 (m, 4 H), 7.44 (d, 1 H, J = 10.2 Hz), 7.89 (s, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 18.1, 18.5, 117.2, 119.7, 122.0, 122.9, 124.4, 126.8, 129.1, 129.2, 141.0, 141.3 ppm. ESI-HRMS: m/z calcd for C16H17N3: 252.1495 [M + H]+; found: 252.1508 [M + H]+. N-(2,6-Dimethylphenyl)imidazo[1,2-a]pyrazin-3-amine (4d) Yield 63%; orange crystals; mp 145–147 °C. IR (4000–600 cm–1): νmax = 3286, 2940, 1544, 1475, 1314, 1055, 791, 769 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.93 (s, 6 H), 4.35 (br s, 1 H), 6.64 (s, 1 H), 6.86 (m, 1 H), 6.95 (d, 2 H, J = 7.4 Hz), 7.71 (d, 1 H, J = 4.7 Hz), 8.13 (d, 1 H, J= 6.5 Hz), 8.74 (s, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 18.2, 115.4, 124.9, 126.4, 127.5, 131.4, 136.5, 138.7, 141.9, 142.0 ppm. ESI-HRMS: m/z calcd for C16H17N3: 239.1291 [M + H]+, 261.1110 [M + Na]+; found: 239.1299 [M + H]+, 261.1116 [M + Na]+. N-(2,6-Dimethylphenyl)-7-methylimidazo[1,2-a]pyridin-3-amine (4e) Yield 69%; yellowish viscous liquid. IR (4000–600 cm–1): νmax = 3231, 2360, 1644, 1561, 1414 cm–1. 1H NMR (400 MHz, CDCl3): δ = 2.02 (s, 3 H), 2.19 (s, 6 H), 5.37 (br s, 1 H), 6.86 (t, 1 H, J = 8.2 Hz), 6.98 (m, 1 H), 7.63 (m, 1 H), 7.95 (s, 1 H), 8.02 (d, 1 H, J = 6.9 Hz) ppm. 13C NMR (100 MHz, CDCl3): δ = 18.1, 21.4, 110.7, 114.7, 121.9, 121.2, 129.2, 141.7, 151.9, 157.3, 162.7 ppm. ESI-HRMS: m/z calcd for C16H17N3: 252.1495 [M + H]+; found: 252.1484 [M + H]+. N-(2,6-Dimethylphenyl)-5-methylimidazo[1,2-a]pyridin-3-amine (4g) Yield 65%; reddish viscous liquid. IR (4000–600 cm–1): νmax = 3248, 2924, 2854, 1639, 1559, 1509, 1289, 1145, 1035, 772, 733 cm–1. 1H NMR (400 MHz, CDCl3): δ = 2.04 (s, 6 H), 2.94 (s, 3 H), 5.17 (br s, 1 H), 6.44 (m, 2 H), 6.84 (t, 2 H, J = 7.3 Hz), 7.28 (t, 1 H, J = 7.3 Hz), 7.32 (s, 1 H), 7.35 (s, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 18.5, 20.4, 113.5, 116.3, 122.3, 123.9, 127.1, 128.0, 135.8, 138.5, 142.6, 143.9 ppm. ESI-HRMS: m/z calcd for C16H17N3: 252.1495 [M + H]+; found: 252.1488 [M + H]+. N-tert-Butyl-7-methylimidazo[1,2-a]pyridin-3-amine (4h) Yield 69%; yellow viscous liquid. IR (4000–600 cm–1): νmax = 3240, 2924, 2854, 1639, 1559, 1471, 1145 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.29 (s, 9 H), 2.23 (s, 3 H), 4.49 (br s, 1), 6.40 (d, 1 H, J = 5.8 Hz), 6.55 (s, 1 H), 6.84 (m, 1 H), 7.68 (d, 1 H, J = 6.0 Hz) ppm. 13C NMR (100 MHz, CDCl3): δ = 20.5, 28.7, 52.1, 110.5, 113.1, 116.6, 124.1, 125.3, 152.0, 155.3 ppm. ESI-HRMS: m/z calcd for C12H17N3: 204.1495 [M + H]+; found: 204.1507 [M + H]+.
  • 18 Sharma A, Li H.-Y. Synlett 2011; 1407