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Abstract We report a highly enantioselective α-amination of α-
branched ketones catalyzed by a chiral phosphoric acid employing azo-
dicarboxylates as reagents. The desired products were obtained in
good to excellent yields and enantioselectivities.

Key words asymmetric synthesis, Brønsted acid catalysis, electrophil-
ic amination, α-branched ketones, enol catalysis, azodicarboxylates

Enantiomerically pure α-amino ketones and α-amino
alcohols are important substructures of natural products
and pharmaceuticals.1 For example, ketamine is used as an
anesthetic and currently under investigation for the treat-
ment of depression.2 Recent studies revealed that its (S)-
isomer is four times more active than its enantiomer, mak-
ing new asymmetric methodologies for the synthesis of
ketamine even more relevant.3 Recently, catalytic asymmet-
ric electrophilic amination reactions of carbonyl com-
pounds have been developed. The reported protocols em-
ploy azodicarboxylates, N-hydroxycarbamates, and nitroso-
benzene as amination reagents.4 Several activation modes
have successfully been applied and typically take advantage
of highly reactive starting materials, such as β-keto esters,
α-cyano carbonyls, α-fluorinated ketones, nitroacetates, or
oxindoles.4,5 The direct amination of unactivated carbonyl
compounds has been successfully achieved with both alde-
hydes and ketones by enamine catalysis.6 However, when
α-branched ketones are employed, chiral amine catalysts
give poor results because of the sterically constrained
enamine intermediate. Furthermore, aminocatalysis prefer-
entially forms the kinetic enamine, thus restricting access
to valuable enantioenriched ketones bearing a quaternary

stereocenter. One of the rare examples which afford these
compounds from unactivated α-alkyl ketones was reported
by Terada and co-workers by employing tetralone deriva-
tives as substrates and a chiral organosuperbase as cata-
lyst.7

Recently, our group proposed a solution to this limita-
tion of aminocatalysis by shifting to enol catalysis with the
development of a chiral phosphoric acid catalyzed asym-
metric Michael reaction of α-branched ketones with
enones.8 This approach directly suggests the use of various
other electrophiles (X=Y; Scheme 1). Brønsted acid cata-
lyzed α-aminations of aromatic nucleophiles have been re-
ported but, the direct amination of α-branched ketones has
been completely unknown.9,10 Here, we report a chiral
phosphoric acid catalyzed α-amination of α-branched cy-
clic ketones using azodicarboxylates as the electrophilic ni-
trogen source.11

We began our studies by employing 2-methyl cyclohex-
anone (1a) as the model substrate and dibenzyl azodicar-
boxylate (DBAD; 2a) as the electrophile (Table 1). When (S)-
TRIP (4a) was used as catalyst, 3a was obtained in excellent
enantioselectivity; however. only poor conversion was ob-
served (Table 1, entry 1). After screening several phosphoric
acids bearing different substituents in the 3,3′-positions,
catalyst 4c proved to be superior, in terms of both reactivity
and selectivity (Table 1, entry 3). Switching the solvent
from dichloromethane to acetonitrile and raising the con-
centration of the substrate to 1 M led to a slight increase of
the enantiomeric ratio and a beneficial effect on the con-
version (Table 1, entry 4). The optimized reaction condi-
tions, found by further increasing the concentration to 2 M
and decreasing the amount of 2a to 1.2 equivalents, afford-
ed the desired product 3a in 85% isolated yield and an enan-
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tiomeric ratio of 99:1 (Table 1, entry 5). Interestingly, de-
creasing the catalyst loading to 1 mol% had no influence on
enantioselectivity, but lower conversions were obtained.
When neat conditions were employed, a strong increase of

Scheme 1  Proposed catalytic cycle for the α-functionalization of ke-
tones by enol catalysis
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Table 1  Optimization of the Brønsted Acid Catalyzed α-Amination of 
α-Branched Ketonesa

Entry Catalyst Solvent Conversionb erc

1 4a CH2Cl2 (0.5 M)  21% 94:6

2 4b CH2Cl2 (0.5 M)  39% 93:7

3 4c CH2Cl2 (0.5 M)  96% 98:2

4 4c MeCN (1.0 M)  93% 98.5:1.5

5d,e 4c MeCN (2.0 M) (85%) 99:1
a Reaction conditions: 1a (0.05 mmol), 2 (0.1 mmol), 4 (5 mol%), solvent 
(0.1 mL), r.t., 24 h.
b Determined by 1H NMR using triphenylmethane as an internal standard, 
with isolated yield given in parentheses.
c Determined by HPLC on a chiral stationary phase.
e Amount of 2 used was 0.06 mmol.
f Reaction was carried out on a 0.2-mmol scale.
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reactivity was observed, albeit the enantioselectivity was
diminished (for the full optimization, see the Supporting
Information).

With the optimal reaction conditions in hand, we fo-
cused our attention on the scope of the Brønsted acid cata-
lyzed α-amination of α-branched ketones (Scheme 2). The
reaction proved to be rather general; in addition to DBAD
(2a), DEAD (2b) and DIAD (2c) could also be used as electro-
philic aminating reagents, giving the corresponding α-hy-
drazino ketones in moderate to good yields and excellent
enantioselectivities (3a–c in Scheme 2). To our delight, a
large variety of substituents in the 2-position were tolerat-
ed under the reaction conditions, affording in all cases the
desired products in good yields and excellent enantioselec-
tivities (3d–i). Interestingly, when cyclohexanone itself was
used as a starting material, the monoaminated product 3d
was obtained, and no racemization occurred under the re-
action conditions, further supporting the generality of enol
catalysis. 2-Alkyl-substituted cyclopentanones also reacted
smoothly (3j,k). When the ring size of the cyclic ketones
was increased, a lower reactivities and enantioselectivities
were observed, presumably due to a slow and hindered
enolization (3l,m). The scalability of the reaction was prov-
en by reacting 2-phenylcyclohexanone (1c) and DEAD (2b)
on a 1.0 mmol scale to give product 3n in 77% yield and an
enantiomeric ratio of 97.5:2.5. 1-Indanone- and 1-te-
tralone-derived substrates represent a current limitation of
the methodology as only low reactivity and enantioselec-
tivity were observed (3o and 3p). The absolute configura-
tion of the products was assigned based on known com-
pound 3d.12

To further prove the utility of our transformation, pre-
liminary attempts to cleave the N–N bond by employing a
slightly modified literature procedure13 afforded the de-
sired product 6 in 35% yield and without any loss of enan-
tiopurity (Scheme 3).

Scheme 3  Application of the Brønsted acid catalyzed α-amination of 
α-branched ketones to the synthesis of carbamate-protected α-amino 
ketones

In summary, we have developed an asymmetric α-ami-
nation of α-branched cyclic ketones by enol catalysis.14 Em-
ploying a chiral phosphoric acid as the catalyst and various
azodicarboxylates, the desired carbamate-protected cyclic
α-hydrazino ketones were obtained in good to excellent
yields (40–99%) and enantioselectivities (enantiomeric ra-
tios from 60:40 to 99:1). The feasibility of the N–N bond

cleavage under mild redox neutral conditions was also
proven. The current protocol expands the scope of enol ca-
talysis, thus further opening new reaction pathways in
asymmetric catalysis.
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