Synthesis 2015; 47(18): 2851-2859
DOI: 10.1055/s-0034-1380754
paper
© Georg Thieme Verlag Stuttgart · New York

Practical Synthesis of N-(Diphenylmethyl)- and N-(1-Adamantyl)amides Directly from Aldehydes via a One-Pot Schmidt and Ritter Reaction Sequence

Nabajyoti Hazarika
a   Natural Products Chemistry Division, CSIR-North East Institute of Science & Technology, Jorhat 785006, Assam, India   Email: b.gakul@gmail.com
,
Gakul Baishya*
a   Natural Products Chemistry Division, CSIR-North East Institute of Science & Technology, Jorhat 785006, Assam, India   Email: b.gakul@gmail.com
,
Prodeep Phukan
b   Department of Chemistry, Gauhati University, Guwahati 781014, Assam, India
› Author Affiliations
Further Information

Publication History

Received: 04 March 2015

Accepted after revision: 16 April 2015

Publication Date:
23 June 2015 (online)


Abstract

Nonoxidative and noncoupling reaction conditions have been developed for the synthesis of N-(diphenylmethyl)- and N-(1-adamantyl)amide derivatives directly from aldehydes by employing the concept of a Schmidt and Ritter reaction sequence in a one-pot operation. The reagent mixture consisting of sodium azide and HBF4·OEt2 in acetic acid converts the aldehydes into their respective nitrile analogues which in situ undergo the Ritter reaction with diphenylmethanol or 1-adamantanol to afford the corresponding N-(diphenylmethyl)- or N-(1-adamantyl)amide derivatives in very good yields. The method does not require column chromatographic purification for isolation of the products. With its simple reaction procedure and easy product purification technique, this method outshines earlier conventional two-step methods.

 
  • References


    • For reviews on multicomponent reactions, see:
    • 1a Ramachary D, Jain BS. Org. Biomol. Chem. 2011; 9: 1277 ; and references cited therein
    • 1b Tietze LF, Beifuss U. Angew. Chem., Int. Ed. Engl. 1993; 32: 131
    • 1c Tietze LF. Chem. Rev. 1996; 96: 115
    • 1d Tietze LF, Rackelmann N. Pure Appl. Chem. 2004; 76: 1967
    • 1e Padwa A. Pure Appl. Chem. 2004; 76: 1933
    • 1f Zhu J, Bienayme H. Multicomponent Reactions. Wiley–VCH; Weinheim: 2005

      For reviews on amide bond formation, see:
    • 2a Pattarbiraman BR, Bode JW. Nature 2011; 480: 471
    • 2b Montalbetti CA. G. N, Falque V. Tetrahedron 2005; 61: 10827
    • 2c Valeur E, Bradley M. Chem. Soc. Rev. 2009; 38: 606
    • 3a Benz G In Comprehensive Organic Synthesis . Vol. 6. Trost BM, Fleming I. Pergamon; Oxford: 1991: 381-418
    • 3b Larock RC. Comprehensive Organic Transformations . 2nd ed. Wiley–VCH; New York: 1999: 1932-1941
    • 3c Naik S, Bhattacharjya G, Talukdar B, Patel BK. Eur. J. Org. Chem. 2004; 1254
    • 3d Katritzky AR, He HY, Suzuki K. J. Org. Chem. 2000; 65: 8210
    • 3e Katritzky AR, Cai C, Singh SK. J. Org. Chem. 2006; 71: 3375
    • 4a Forsyth CJ. Nat. Chem. 2010; 2: 252
    • 4b Um S, Pyee Y, Kim E.-H, Lee SK, Shin J, Oh D.-C. Mar. Drugs 2013; 11: 611
    • 5a Lutz C, Lutz V, Knochel P. Tetrahedron 1998; 54: 6385
    • 5b Greene TW, Wuts PG. M. Protective Groups in Organic Synthesis . 3rd ed. John Wiley & Sons; New York: 1999
    • 5c Theodoridis G. Tetrahedron 2000; 56: 2339
    • 5d Agami C, Couty F. Tetrahedron 2002; 58: 2701
    • 5e Sartori G, Ballini R, Bigi F, Bosica G, Maggi R, Righi P. Chem. Rev. 2004; 104: 199
    • 6a Clayden J, Greeves N, Warren S, Wothers P. Organic Chemistry . 1st ed. Oxford University Press; New York: 2001: 248, 652, 1484
    • 6b Mao L, Wang Z, Li Y, Han X, Zhou W. Synlett 2011; 129
    • 7a Ramos-Tomillero I, Mendive-Tapia L, Góngora-Benítez M, Nicolás E, Tulla-Puche J, Albericio F. Molecules 2013; 18: 5155
    • 7b Takahashi D, Yano T, Fukui T. Org. Lett. 2012; 14: 4514
    • 7c Wang Z, Zhang Y, Fu H, Jiang Y, Zhao Y. Org. Lett. 2008; 10: 1863
    • 7d Ye Y.-H, Zhang J, Wang G, Chen S.-Y, Yu X.-Q. Tetrahedron 2011; 67: 464
    • 7e Yu H, Shen J. Org. Lett. 2014; 16: 3204
    • 8a Ritter JJ, Minieri PP. J. Am. Chem. Soc. 1948; 70: 4045
    • 8b Benson FR, Ritter JJ. J. Am. Chem. Soc. 1949; 71: 4128
    • 8c Plaut H, Ritter JJ. J. Am. Chem. Soc. 1951; 73: 4076
    • 8d Ritter JJ, Yonkers NY. US Patent 2573673, 1951
    • 8e Krimen LI, Cota DL. Org. React. 1969; 17: 213
    • 8f Dokli I, Gredičak M. Eur. J. Org. Chem. 2015; 2727
    • 8g For a review on Ritter-type reactions, see: Bishop R. In Comprehensive Organic Synthesis . 2nd ed., Vol. 6; Knochel P, Molander GA. Elsevier; Amsterdam: 2014: 239

      For acid-promoted Ritter reactions, see:
    • 9a Sanz R, Martinez A, Guilarte V, Alvarez-Gutierrez JM, Rodriguez F. Eur. J. Org. Chem. 2007; 4642
    • 9b Polshettiwar V, Varma RS. Tetrahedron Lett. 2008; 49: 2661
    • 9c Maki T, Ishihara K, Yamamoto H. Tetrahedron 2007; 63: 8645
    • 9d Firouzabadi H, Iranpoor N, Khoshnood A. Catal. Commun. 2008; 9: 529
    • 9e Kartashov VR, Malkova KV, Arkhipova AV, Sokolova TN. Russ. J. Org. Chem. 2006; 42: 966
    • 9f García Martínez A, Martínez Alvarez R, Teso Vilar E, García Fraile A, Hanack M, Subramanian LR. Tetrahedron Lett. 1989; 30: 581
    • 9g Tamaddon F, Khoobi M, Keshavarz E. Tetrahedron Lett. 2007; 48: 3643
    • 9h Callens E, Burton AJ, Barrett AG. M. Tetrahedron Lett. 2006; 47: 8699
    • 9i Gullickson GC, Lewis DE. Synthesis 2003; 681
    • 9j Fernholz H, Schmidt HJ. Angew. Chem., Int. Ed. Engl. 1969; 8: 521
    • 9k Reddy KL. Tetrahedron Lett. 2003; 44: 1453
    • 9l Baum JC, Milne JE, Murry JA, Thiel OR. J. Org. Chem. 2009; 74: 2207
    • 10a Lebedev MY, Erman MB. Tetrahedron Lett. 2002; 43: 1397
    • 10b Justribó V, Colombo MI. Tetrahedron Lett. 2003; 44: 8023
    • 10c Okuhara T, Chen X. Microporous Mesoporous Mater. 2001; 48: 293 ; and references cited therein
    • 11a Uddin N, Ulicki JS, Foersterling FH, Hossain MM. Tetrahedron Lett. 2011; 52: 4353
    • 11b Molander GA, Raushel J, Ellis NM. J. Org. Chem. 2010; 75: 4304
    • 11c Akiyama T, Itoh J, Fuchibe K. Synlett 2002; 1269
    • 11d Islam MS, Brenan C, Wang Q, Hossain MM. J. Org. Chem. 2006; 71: 4675
    • 11e Dudely ME, Morshed MM, Brenan CL, Islam MS, Ahmad MS, Attu M.-R, Branstetter B, Hossain MM. J. Org. Chem. 2004; 69: 7599
    • 11f Subba Reddy BV, Reddy NS, Madan Ch, Yadav JS. Tetrahedron Lett. 2010; 51: 4827
    • 11g Baishya G, Hazarika N, Sarmah B. J. Fluorine Chem. 2014; 166: 1
    • 12a Yadav JS, Subba Reddy BV, Anusha B, Subba Reddy UV, Bhadra Reddy VV. Tetrahedron Lett. 2010; 51: 2872
    • 12b Yadav JS, Subba Reddy BV, Ramesh K, Narayana Kumar GG. K. S, Grée R. Tetrahedron Lett. 2010; 51: 1578
  • 13 Sarmah B, Baishya G, Baruah RK. Eur. J. Org. Chem. 2014; 7561
  • 14 Hazarika N, Baishya G. Eur. J. Org. Chem. 2014; 5686
  • 15 Likhosherstov AM, Kryzhanovskii SA, Mokrov GV, Stolyaruk VN, Vititnova MB, Tsorin IB, Gudasheva TA. Pharm. Chem. J. 2014; 48: 225
  • 16 Maurin JK, Lasek W, Górska A, Świtaj T, Jakubowska AB, Kazimierczuk Z. Chemistry & Biodiversity 2004; 1: 1498
  • 17 Jimenez HN, Ma G, Li G, Grenon M, Doller D. WO 2011087758 A1, 2011
  • 18 Yaragorla S, Singh G, Saini PL, Reddy MK. Tetrahedron Lett. 2014; 55: 4657 ; and references cited therein
  • 19 Olah GA, Balaram Gupta BG. J. Org. Chem. 1980; 45: 3532
    • 20a Schmidt KF. Z. Angew. Chem. 1923; 36: 511
    • 20b Schmidt KF. Ber. Dtsch. Chem. Ges. 1924; 57: 704
    • 20c Koldobskii GI, Ostrovskii VA, Gidaspov BV. Russ. Chem. Rev. 1978; 47: 1084
    • 20d Smith PA. S, Horwitz JP. J. Am. Chem. Soc. 1950; 72: 3718
    • 20e Datta SK, Grundmann C, Bhattacharyya NK. J. Chem. Soc. C 1970; 2058
    • 20f McEwen WE, Conrad WE, Vanderwerf CA. J. Am. Chem. Soc. 1952; 74: 1168
    • 20g Rokade BV, Prabhu KR. J. Org. Chem. 2012; 77: 5364

    • For a review on the Schmidt reaction, see:
    • 20h Aube J, Fehl C, Liu R, McLeod MC, Motiwala HF In Comprehensive Organic Synthesis . 2nd ed., Vol. 6; Knochel P, Molander GA. Elsevier; Amsterdam: 2014: 598
    • 20i Nandi GC, Laali KK. Tetrahedron Lett. 2013; 54: 2177