Eur J Pediatr Surg 2014; 24(03): 227-236
DOI: 10.1055/s-0034-1382259
Review
Georg Thieme Verlag KG Stuttgart · New York

Regenerative Medicine in Urology

Massimo Garriboli
1   Department of Paediatric Urology, Evelina Children's Hospital, Guy's and St. Thomas NHS Foundation Trust, London, United Kingdom
,
Anna Radford
2   Department of Biology, Jack Birch Unit of Molecular Carcinogenesis, University of York, York, United Kingdom
,
Jennifer Southgate
2   Department of Biology, Jack Birch Unit of Molecular Carcinogenesis, University of York, York, United Kingdom
› Author Affiliations
Further Information

Publication History

04 May 2014

05 May 2014

Publication Date:
11 June 2014 (online)

Abstract

Regenerative medicine is an emerging field that is focused on the repair, replacement or regeneration of tissues and organs. It involves multiple disciplines dedicated to delivering different aspects of the regeneration process, including cell biology, material sciences and bioengineering. The development of tissue engineering strategies incorporating the use of autologous stem cells holds particular promise for overcoming insufficiencies from using cells from the patient's own diseased tissues and providing solutions for treatment of many disorders of the genitourinary tract. Many experimental projects have successfully utilized stem cells and several pilot studies in humans indicate the potential of stem cell therapy. However, the discipline is still young and further knowledge of both materials and stem cell biology is required before this promise can be realized through clinical application. This review examines the principles related to regenerative medicine and bioengineering focusing on the stem cell isolation expansion and clinical application. Analysis of current achievements will be reviewed alongside the challenges that remain to be addressed in considering the present and future perspectives of regenerative medicine applied to urology.

 
  • References

  • 1 Hasetine W. A brave new medicine. A conversation with William Haseltine. Interview by Joe Flower. Health Forum J 1999; 42 (4) 28-30 , 61–65
  • 2 Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 1981; 78 (12) 7634-7638
  • 3 Thomson JA, Itskovitz-Eldor J, Shapiro SS , et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282 (5391) 1145-1147
  • 4 De Coppi P, Bartsch Jr G, Siddiqui MM , et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007; 25 (1) 100-106
  • 5 Marino D, Luginbühl J, Scola S, Meuli M, Reichmann E. Bioengineering dermo-epidermal skin grafts with blood and lymphatic capillaries. Sci Transl Med 2014; 6 (221) 21ra14
  • 6 Baiguera S, Jungebluth P, Burns A , et al. Tissue engineered human tracheas for in vivo implantation. Biomaterials 2010; 31 (34) 8931-8938
  • 7 Niu G, Sapoznik E, Soker S. Bioengineered blood vessels. Expert Opin Biol Ther 2014; 14 (4) 403-410
  • 8 Thaker H, Sharma AK. Regenerative medicine based applications to combat stress urinary incontinence. World J Stem Cells 2013; 5 (4) 112-123
  • 9 Atala A, Cima LG, Kim W , et al. Injectable alginate seeded with chondrocytes as a potential treatment for vesicoureteral reflux. J Urol 1993; 150 (2 Pt 2) 745-747
  • 10 Elliott MJ, De Coppi P, Speggiorin S , et al. Stem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study. Lancet 2012; 380 (9846) 994-1000
  • 11 Wezel F, Southgate J, Thomas DF. Regenerative medicine in urology. BJU Int 2011; 108 (7) 1046-1065
  • 12 Atala A. Tissue engineering for the replacement of organ function in the genitourinary system. Am J Transplant 2004; 4 (Suppl. 06) 58-73
  • 13 Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 2000; 18 (4) 399-404
  • 14 Reubinoff BE, Itsykson P, Turetsky T , et al. Neural progenitors from human embryonic stem cells. Nat Biotechnol 2001; 19 (12) 1134-1140
  • 15 Muraki K, Hirose M, Kotobuki N , et al. Assessment of viability and osteogenic ability of human mesenchymal stem cells after being stored in suspension for clinical transplantation. Tissue Eng 2006; 12 (6) 1711-1719
  • 16 Matsuse D, Kitada M, Kohama M , et al. Human umbilical cord-derived mesenchymal stromal cells differentiate into functional Schwann cells that sustain peripheral nerve regeneration. J Neuropathol Exp Neurol 2010; 69 (9) 973-985
  • 17 Hou SY, Zhang HY, Quan DP, Liu XL, Zhu JK. Tissue-engineered peripheral nerve grafting by differentiated bone marrow stromal cells. Neuroscience 2006; 140 (1) 101-110
  • 18 Anderson DJ, Gage FH, Weissman IL. Can stem cells cross lineage boundaries?. Nat Med 2001; 7 (4) 393-395
  • 19 Forbes SJ, Vig P, Poulsom R, Wright NA, Alison MR. Adult stem cell plasticity: new pathways of tissue regeneration become visible. Clin Sci (Lond) 2002; 103 (4) 355-369
  • 20 Richards M, Fong CY, Chan WK, Wong PC, Bongso A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol 2002; 20 (9) 933-936
  • 21 Amit M, Shariki C, Margulets V, Itskovitz-Eldor J. Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod 2004; 70 (3) 837-845
  • 22 Alghrani A. The Human Fertilisation and Embryology Act 2008: a missed opportunity?. J Med Ethics 2009; 35 (12) 718-719
  • 23 Matthews KR, Rowland ML. Stem cell policy in the Obama age: UK and US perspectives. Regen Med 2011; 6 (1) 125-132
  • 24 Bahadur G, Iqbal M, Malik S, Sanyal A, Wafa R, Noble R. Admixed human embryos and stem cells: legislative, ethical and scientific advances. Reprod Biomed Online 2008; 17 (Suppl. 01) 25-32
  • 25 Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126 (4) 663-676
  • 26 Takahashi K, Tanabe K, Ohnuki M , et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131 (5) 861-872
  • 27 Meissner A, Wernig M, Jaenisch R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 2007; 25 (10) 1177-1181
  • 28 Park IH, Zhao R, West JA , et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008; 451 (7175) 141-146
  • 29 Scheper W, Copray S. The molecular mechanism of induced pluripotency: a two-stage switch. Stem Cell Rev 2009; 5 (3) 204-223
  • 30 Sarkar S, Chang HC, Porreco RP, Jones OW. Neural origin of cells in amniotic fluid. Am J Obstet Gynecol 1980; 136 (1) 67-72
  • 31 Cousineau J, Potier M, Dallaire L, Melançon SB. Separation of amniotic fluid cell types in primary culture by Percoll density gradient centrifugation. Prenat Diagn 1982; 2 (4) 241-249
  • 32 Medina-Gómez P, Johnston TH. Cell morphology in long-term cultures of normal and abnormal amniotic fluids. Hum Genet 1982; 60 (4) 310-313
  • 33 von Koskull H, Aula P, Trejdosiewicz LK, Virtanen I. Identification of cells from fetal bladder epithelium in human amniotic fluid. Hum Genet 1984; 65 (3) 262-267
  • 34 Underwood MA, Gilbert WM, Sherman MP. Amniotic fluid: not just fetal urine anymore. J Perinatol 2005; 25 (5) 341-348
  • 35 Miki T, Marongiu F, Dorko K, Ellis EC, Strom SC. Isolation of amniotic epithelial stem cells. Curr Protoc Stem Cell Biol 2010; 12: 1E.3.1-1E.3.10
  • 36 Cananzi M, De Coppi P. CD117(+) amniotic fluid stem cells: state of the art and future perspectives. Organogenesis 2012; 8 (3) 77-88
  • 37 Mukonoweshuro B, Brown CJ, Fisher J, Ingham E. Immunogenicity of undifferentiated and differentiated allogeneic mouse mesenchymal stem cells. J Tissue Eng 2014; 5: 2041731414534255
  • 38 Tee JY, Vaghjiani V, Liu YH, Murthi P, Chan J, Manuelpillai U. Immunogenicity and immunomodulatory properties of hepatocyte-like cells derived from human amniotic epithelial cells. Curr Stem Cell Res Ther 2013; 8 (1) 91-99
  • 39 In 't Anker PS, Scherjon SA, Kleijburg-van der Keur C , et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 2003; 102 (4) 1548-1549
  • 40 Yan ZJ, Hu YQ, Zhang HT , et al. Comparison of the neural differentiation potential of human mesenchymal stem cells from amniotic fluid and adult bone marrow. Cell Mol Neurobiol 2013; 33 (4) 465-475
  • 41 De Coppi P, Callegari A, Chiavegato A , et al. Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells. J Urol 2007; 177 (1) 369-376
  • 42 Ghionzoli M, Repele A, Sartiani L , et al. Human amniotic fluid stem cell differentiation along smooth muscle lineage. FASEB J 2013; 27 (12) 4853-4865
  • 43 Kaviani A, Perry TE, Dzakovic A, Jennings RW, Ziegler MM, Fauza DO. The amniotic fluid as a source of cells for fetal tissue engineering. J Pediatr Surg 2001; 36 (11) 1662-1665
  • 44 Kaviani A, Guleserian K, Perry TE, Jennings RW, Ziegler MM, Fauza DO. Fetal tissue engineering from amniotic fluid. J Am Coll Surg 2003; 196 (4) 592-597
  • 45 Pozzobon M, Piccoli M, De Coppi P. Stem cells from fetal membranes and amniotic fluid: markers for cell isolation and therapy. Cell Tissue Bank 2014;
  • 46 Perin L, Sedrakyan S, Giuliani S , et al. Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis. PLoS ONE 2010; 5 (2) e9357
  • 47 Zani A, Cananzi M, Fascetti-Leon F , et al. Amniotic fluid stem cells improve survival and enhance repair of damaged intestine in necrotising enterocolitis via a COX-2 dependent mechanism. Gut 2014; 63 (2) 300-309
  • 48 Atala A. Engineering organs. Curr Opin Biotechnol 2009; 20 (5) 575-592
  • 49 Korossis S, Bolland F, Southgate J, Ingham E, Fisher J. Regional biomechanical and histological characterisation of the passive porcine urinary bladder: Implications for augmentation and tissue engineering strategies. Biomaterials 2009; 30 (2) 266-275
  • 50 Bullers S, Baker S, Ingham E, Southgate J. The human tissue: biomaterial interface: a role for PPARγ-dependent glucocorticoid receptor activation in regulating the CD163+ M2 macrophage phenotype. Tissue Eng Part A 2014;
  • 51 Zhang Y, Frimberger D, Cheng EY, Lin HK, Kropp BP. Challenges in a larger bladder replacement with cell-seeded and unseeded small intestinal submucosa grafts in a subtotal cystectomy model. BJU Int 2006; 98 (5) 1100-1105
  • 52 Oberpenning F, Meng J, Yoo JJ, Atala A. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol 1999; 17 (2) 149-155
  • 53 Turner AM, Subramaniam R, Thomas DF, Southgate J. Generation of a functional, differentiated porcine urothelial tissue in vitro. Eur Urol 2008; 54 (6) 1423-1432
  • 54 Cilento BG, Freeman MR, Schneck FX, Retik AB, Atala A. Phenotypic and cytogenetic characterization of human bladder urothelia expanded in vitro. J Urol 1994; 152 (2 Pt 2) 665-670
  • 55 Puthenveettil JA, Burger MS, Reznikoff CA. Replicative senescence in human uroepithelial cells. Adv Exp Med Biol 1999; 462: 83-91
  • 56 Sharma AK, Hota PV, Matoka DJ , et al. Urinary bladder smooth muscle regeneration utilizing bone marrow derived mesenchymal stem cell seeded elastomeric poly(1,8-octanediol-co-citrate) based thin films. Biomaterials 2010; 31 (24) 6207-6217
  • 57 Baumert H, Simon P, Hekmati M , et al. Development of a seeded scaffold in the great omentum: feasibility of an in vivo bioreactor for bladder tissue engineering. Eur Urol 2007; 52 (3) 884-890
  • 58 Davis NF, Mooney R, Piterina AV , et al. Construction and evaluation of urinary bladder bioreactor for urologic tissue-engineering purposes. Urology 2011; 78 (4) 954-960
  • 59 Mitterberger M, Pinggera GM, Marksteiner R , et al. Adult stem cell therapy of female stress urinary incontinence. Eur Urol 2008; 53 (1) 169-175
  • 60 Murray P, Camussi G, Davies JA , et al. The KIDSTEM European Research Training Network: Developing a Stem Cell Based Therapy to Replace Nephrons Lost through Reflux Nephropathy. Organogenesis 2007; 3 (1) 2-5
  • 61 Kirchin V, Page T, Keegan PE, Atiemo K, Cody JD, McClinton S. Urethral injection therapy for urinary incontinence in women. Cochrane Database Syst Rev 2012; 2: CD003881
  • 62 Jack GS, Almeida FG, Zhang R, Alfonso ZC, Zuk PA, Rodríguez LV. Processed lipoaspirate cells for tissue engineering of the lower urinary tract: implications for the treatment of stress urinary incontinence and bladder reconstruction. J Urol 2005; 174 (5) 2041-2045
  • 63 Strasser H, Marksteiner R, Margreiter E , et al. Transurethral ultrasonography-guided injection of adult autologous stem cells versus transurethral endoscopic injection of collagen in treatment of urinary incontinence. World J Urol 2007; 25 (4) 385-392
  • 64 Kim SO, Na HS, Kwon D, Joo SY, Kim HS, Ahn Y. Bone-marrow-derived mesenchymal stem cell transplantation enhances closing pressure and leak point pressure in a female urinary incontinence rat model. Urol Int 2011; 86 (1) 110-116
  • 65 Shi LB, Cai HX, Chen LK , et al. Tissue engineered bulking agent with adipose-derived stem cells and silk fibroin microspheres for the treatment of intrinsic urethral sphincter deficiency. Biomaterials 2014; 35 (5) 1519-1530
  • 66 Sèbe P, Doucet C, Cornu JN , et al. Intrasphincteric injections of autologous muscular cells in women with refractory stress urinary incontinence: a prospective study. Int Urogynecol J 2011; 22 (2) 183-189
  • 67 Carr LK, Robert M, Kultgen PL , et al. Autologous muscle derived cell therapy for stress urinary incontinence: a prospective, dose ranging study. J Urol 2013; 189 (2) 595-601
  • 68 Blaganje M, Lukanović A. Ultrasound-guided autologous myoblast injections into the extrinsic urethral sphincter: tissue engineering for the treatment of stress urinary incontinence. Int Urogynecol J 2013; 24 (4) 533-535
  • 69 Chen F, Yoo JJ, Atala A. Acellular collagen matrix as a possible “off the shelf” biomaterial for urethral repair. Urology 1999; 54 (3) 407-410
  • 70 Xie M, Song L, Wang J, Fan S, Zhang Y, Xu Y. Evaluation of stretched electrospun silk fibroin matrices seeded with urothelial cells for urethra reconstruction. J Surg Res 2013; 184 (2) 774-781
  • 71 Hu YF, Yang SX, Wang LL, Jin HM. Curative effect and histocompatibility evaluation of reconstruction of traumatic defect of rabbit urethra using extracellular matrix. Chin J Traumatol 2008; 11 (5) 274-278
  • 72 Fu Q, Deng CL, Liu W, Cao YL. Urethral replacement using epidermal cell-seeded tubular acellular bladder collagen matrix. BJU Int 2007; 99 (5) 1162-1165
  • 73 Micol LA, Arenas da Silva LF, Geutjes PJ , et al. In-vivo performance of high-density collagen gel tubes for urethral regeneration in a rabbit model. Biomaterials 2012; 33 (30) 7447-7455
  • 74 Orabi H, AbouShwareb T, Zhang Y, Yoo JJ, Atala A. Cell-seeded tubularized scaffolds for reconstruction of long urethral defects: a preclinical study. Eur Urol 2013; 63 (3) 531-538
  • 75 Olsen L, Bowald S, Busch C, Carlsten J, Eriksson I. Urethral reconstruction with a new synthetic absorbable device. An experimental study. Scand J Urol Nephrol 1992; 26 (4) 323-326
  • 76 Chung YG, Tu D, Franck D , et al. Acellular bi-layer silk fibroin scaffolds support tissue regeneration in a rabbit model of onlay urethroplasty. PLoS ONE 2014; 9 (3) e91592
  • 77 Dorin RP, Pohl HG, De Filippo RE, Yoo JJ, Atala A. Tubularized urethral replacement with unseeded matrices: what is the maximum distance for normal tissue regeneration?. World J Urol 2008; 26 (4) 323-326
  • 78 Li CL, Liao WB, Yang SX , et al. Urethral reconstruction using bone marrow mesenchymal stem cell- and smooth muscle cell-seeded bladder acellular matrix. Transplant Proc 2013; 45 (9) 3402-3407
  • 79 Mikami H, Kuwahara G, Nakamura N, Yamato M, Tanaka M, Kodama S. Two-layer tissue engineered urethra using oral epithelial and muscle derived cells. J Urol 2012; 187 (5) 1882-1889
  • 80 Feng C, Xu YM, Fu Q, Zhu WD, Cui L. Reconstruction of three-dimensional neourethra using lingual keratinocytes and corporal smooth muscle cells seeded acellular corporal spongiosum. Tissue Eng Part A 2011; 17 (23-24) 3011-3019
  • 81 Gu GL, Xia SJ, Zhang J , et al. Tubularized urethral replacement using tissue-engineered peritoneum-like tissue in a rabbit model. Urol Int 2012; 89 (3) 358-364
  • 82 Li C, Xu YM, Song LJ, Fu Q, Cui L, Yin S. Urethral reconstruction using oral keratinocyte seeded bladder acellular matrix grafts. J Urol 2008; 180 (4) 1538-1542
  • 83 Li C, Xu YM, Liu ZS, Li HB. Urethral reconstruction with tissue engineering and RNA interference techniques in rabbits. Urology 2013; 81 (5) 1075-1080
  • 84 Auger FA, Rémy-Zolghadri M, Grenier G, Germain L. A truly new approach for tissue engineering: the LOEX self-assembly technique. Ernst Schering Res Found Workshop 2002; (35) 73-88
  • 85 L'Heureux N, Stoclet JC, Auger FA, Lagaud GJ, Germain L, Andriantsitohaina R. A human tissue-engineered vascular media: a new model for pharmacological studies of contractile responses. FASEB J 2001; 15 (2) 515-524
  • 86 Orabi H, Bouhout S, Morissette A, Rousseau A, Chabaud S, Bolduc S. Tissue engineering of urinary bladder and urethra: advances from bench to patients. ScientificWorldJournal 2013; 2013 (13) 154564
  • 87 Imbeault A, Bernard G, Rousseau A , et al. An endothelialized urothelial cell-seeded tubular graft for urethral replacement. Can Urol Assoc J 2013; 7 (1-2) E4-E9
  • 88 Fossum M, Svensson J, Kratz G, Nordenskjöld A. Autologous in vitro cultured urothelium in hypospadias repair. J Pediatr Urol 2007; 3 (1) 10-18
  • 89 Bhargava S, Patterson JM, Inman RD, MacNeil S, Chapple CR. Tissue-engineered buccal mucosa urethroplasty-clinical outcomes. Eur Urol 2008; 53 (6) 1263-1269
  • 90 Raya-Rivera A, Esquiliano DR, Yoo JJ, Lopez-Bayghen E, Soker S, Atala A. Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet 2011; 377 (9772) 1175-1182
  • 91 Melman A, Gingell JC. The epidemiology and pathophysiology of erectile dysfunction. J Urol 1999; 161 (1) 5-11
  • 92 Schultheiss D. Regenerative medicine in andrology: Tissue engineering and gene therapy as potential treatment options for penile deformations and erectile dysfunction. Eur Urol 2004; 46 (2) 162-169
  • 93 Ninković M, Dabernig W. Flap technology for reconstructions of urogenital organs. Curr Opin Urol 2003; 13 (6) 483-488
  • 94 Sievert KD. Vaginal and penile reconstruction. Curr Opin Urol 2003; 13 (6) 489-494
  • 95 Kershen RT, Yoo JJ, Moreland RB, Krane RJ, Atala A. Reconstitution of human corpus cavernosum smooth muscle in vitro and in vivo. Tissue Eng 2002; 8 (3) 515-524
  • 96 Pilatz A, Schultheiss D, Gabouev AI , et al. Isolation of primary endothelial and stromal cell cultures of the corpus cavernosum penis for basic research and tissue engineering. Eur Urol 2005; 47 (5) 710-718 , discussion 718–719
  • 97 Kwon TG, Yoo JJ, Atala A. Autologous penile corpora cavernosa replacement using tissue engineering techniques. J Urol 2002; 168 (4 Pt 2) 1754-1758
  • 98 Chen KL, Eberli D, Yoo JJ, Atala A. Bioengineered corporal tissue for structural and functional restoration of the penis. Proc Natl Acad Sci U S A 2010; 107 (8) 3346-3350
  • 99 Eberli D, Susaeta R, Yoo JJ, Atala A. A method to improve cellular content for corporal tissue engineering. Tissue Eng Part A 2008; 14 (10) 1581-1589
  • 100 Atala A. Tissue engineering of reproductive tissues and organs. Fertil Steril 2012; 98 (1) 21-29
  • 101 Song LJ, Xu YM, Li C, Fu Q, Cui L, Hu XY. Construction of cavernosum smooth muscle using umbilical artery smooth muscle cells seeded on acellular corporal collagen matrices. Int J Androl 2009; 32 (5) 514-523
  • 102 Ji C, Min F, Liang W , et al. Construction of tissue-engineered corpus cavernosum with muscle-derived stem cells and transplantation in vivo. BJU Int 2011; 107 (10) 1638-1646
  • 103 An G, Ji C, Wei Z, Chen H, Zhang J. Engineering of corpus cavernosum using vascular endothelial growth factor-expressing muscle-derived stem cells seeded on acellular corporal collagen matrices. Urology 2013; 81 (2) 424-431
  • 104 Raya-Rivera AM, Baez C, Atala A, Yoo JJ. Tissue engineered testicular prostheses with prolonged testosterone release. World J Urol 2008; 26 (4) 351-358
  • 105 Rubenwolf P, Southgate J. Permeability of differentiated human urothelium in vitro. Methods Mol Biol 2011; 763: 207-222
  • 106 Welk B, Herschorn S, Law C, Nam R. Population based assessment of enterocystoplasty complications in adults. J Urol 2012; 188 (2) 464-469
  • 107 Neuhof H. Fascial transplantation into visceral defects: an experimental and clinical study. Surg Gynecol Obstet 1917; 25: 383-387
  • 108 Zhang Y, Kropp BP, Lin HK, Cowan R, Cheng EY. Bladder regeneration with cell-seeded small intestinal submucosa. Tissue Eng 2004; 10 (1-2) 181-187
  • 109 Schaefer M, Kaiser A, Stehr M, Beyer HJ. Bladder augmentation with small intestinal submucosa leads to unsatisfactory long-term results. J Pediatr Urol 2013; 9 ( 6 Pt A): 878-883
  • 110 Caione P, Boldrini R, Salerno A, Nappo SG. Bladder augmentation using acellular collagen biomatrix: a pilot experience in exstrophic patients. Pediatr Surg Int 2012; 28 (4) 421-428
  • 111 Jack GS, Zhang R, Lee M, Xu Y, Wu BM, Rodríguez LV. Urinary bladder smooth muscle engineered from adipose stem cells and a three dimensional synthetic composite. Biomaterials 2009; 30 (19) 3259-3270
  • 112 Bharadwaj S, Liu G, Shi Y , et al. Multipotential differentiation of human urine-derived stem cells: potential for therapeutic applications in urology. Stem Cells 2013; 31 (9) 1840-1856
  • 113 Oottamasathien S, Wang Y, Williams K , et al. Directed differentiation of embryonic stem cells into bladder tissue. Dev Biol 2007; 304 (2) 556-566
  • 114 Cimetta E, Flaibani M, Mella M , et al. Enhancement of viability of muscle precursor cells on 3D scaffold in a perfusion bioreactor. Int J Artif Organs 2007; 30 (5) 415-428
  • 115 Boruch AV, Nieponice A, Qureshi IR, Gilbert TW, Badylak SF. Constructive remodeling of biologic scaffolds is dependent on early exposure to physiologic bladder filling in a canine partial cystectomy model. J Surg Res 2010; 161 (2) 217-225
  • 116 Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 2006; 367 (9518) 1241-1246
  • 117 Joseph DB, Borer JG, De Filippo RE, Hodges SJ, McLorie GA. Autologous Cell Seeded Biodegradable Scaffold for Augmentation Cystoplasty: Phase II Study in Children and Adolescents with Spina Bifida. J Urol 2014; 191 (5) 1389-1395
  • 118 Subramaniam R, Hinley J, Stahlschmidt J, Southgate J. Tissue engineering potential of urothelial cells from diseased bladders. J Urol 2011; 186 (5) 2014-2020
  • 119 Turner A, Subramanian R, Thomas DF , et al. Transplantation of autologous differentiated urothelium in an experimental model of composite cystoplasty. Eur Urol 2011; 59 (3) 447-454
  • 120 Fraser M, Thomas DF, Pitt E, Harnden P, Trejdosiewicz LK, Southgate J. A surgical model of composite cystoplasty with cultured urothelial cells: a controlled study of gross outcome and urothelial phenotype. BJU Int 2004; 93 (4) 609-616
  • 121 Subramaniam R, Turner AM, Abbas SK, Thomas DF, Southgate J. Seromuscular grafts for bladder reconstruction: extra-luminal demucosalisation of the bowel. Urology 2012; 80 (5) 1147-1150
  • 122 Wezel F, Pearson J, Southgate J. Plasticity of in vitro-generated urothelial cells for functional tissue formation. Tissue Eng Part A 2014; 20 (9-10) 1358-1368
  • 123 Tian H, Bharadwaj S, Liu Y, Ma PX, Atala A, Zhang Y. Differentiation of human bone marrow mesenchymal stem cells into bladder cells: potential for urological tissue engineering. Tissue Eng Part A 2010; 16 (5) 1769-1779
  • 124 Liu J, Huang J, Lin T, Zhang C, Yin X. Cell-to-cell contact induces human adipose tissue-derived stromal cells to differentiate into urothelium-like cells in vitro. Biochem Biophys Res Commun 2009; 390 (3) 931-936
  • 125 Shi JG, Fu WJ, Wang XX , et al. Transdifferentiation of human adipose-derived stem cells into urothelial cells: potential for urinary tract tissue engineering. Cell Tissue Res 2012;
  • 126 Zhang M, Xu MX, Zhou Z , et al. The Differentiation of Human Adipose-Derived Stem Cells towards a Urothelium-Like Phenotype In Vitro and the Dynamic Temporal Changes of Related Cytokines by Both Paracrine and Autocrine Signal Regulation. PLoS ONE 2014; 9 (4) e95583
  • 127 Drewa T, Joachimiak R, Bajek A , et al. Hair follicle stem cells can be driven into a urothelial-like phenotype: an experimental study. Int J Urol 2013; 20 (5) 537-542
  • 128 Shoae-Hassani A, Mortazavi-Tabatabaei SA, Sharif S , et al. Differentiation of human endometrial stem cells into urothelial cells on a three-dimensional nanofibrous silk-collagen scaffold: an autologous cell resource for reconstruction of the urinary bladder wall. J Tissue Eng Regen Med 2013;
  • 129 Wezel F, Southgate J. Reprogramming stromal cells from the urinary tract and prostate: a trip to pluripotency and back?. Eur Urol 2013; 64 (5) 762-764 , discussion 764–765