Aktuelle Neurologie 2014; 41(09): 515-521
DOI: 10.1055/s-0034-1387409
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Klinisch stumme Hirninfarkte

Clinically Silent Brain Infarcts
C. H. Nolte
Klinik und Hochschulambulanz für Neurologie (Direktor: Prof. Matthias Endres), Center for Stroke Research, Charité Campus Benjamin Franklin, Berlin
› Author Affiliations
Further Information

Publication History

Publication Date:
14 November 2014 (online)

Zusammenfassung

Die kontinuierliche Verbesserung moderner bildgebender Verfahren und deren breite Anwendung haben zur Entdeckung von sogenannten klinisch stummen Hirninfarkten geführt. Klinisch stumme Hirninfarkte (KSH) finden sich bei scheinbar gesunden Menschen, vor allem aber bei Patienten mit arteriellem Hypertonus, Nachweis von Arteriosklerose in den Karotiden, Zigarettenkonsum, Vorhofflimmern, metabolischem Syndrom und in Assoziation mit verschiedenen Laborparametern.

Die Bezeichnung „stumm“ bezieht sich häufig auf die Anamnese und eine neurologische Standarduntersuchung und berücksichtigt nicht weniger offensichtliche neuropsychologische Defizite. Insbesondere neuropsychologische Defizite können aber nicht selten bei Patienten mit vermeintlichen KSH gefunden werden. Der Begriff „unentdeckter“ Hirninfarkt wäre somit präziser.

Der Nachweis von KSH geht mit einem erhöhten Risiko für klinisch manifeste Hirninfarkte und für die Entwicklung einer Demenz einher. Patienten mit KSH sollten deshalb hinsichtlich vaskulärer Risikofaktoren und Hirninfarktursachen untersucht und entsprechende Behandlungsmaßnahmen durchgeführt werden.

Abstract

The constant improvement of modern imaging techniques and their widespread use has led to the discovery of so-called clinically silent cerebral infarcts. Clinically silent brain infarcts (also labelled “silent stroke”) can be found in apparently healthy people, but especially in patients with arterial hypertension, evidence of atherosclerosis in the carotid arteries, cigarette smoking, atrial fibrillation, metabolic syndrome and in association with various laboratory parameters.

The term “silent” often refers to the medical history and a standard neurological examination. It does not consider less obvious neuropsychological deficits. In contrast, neuropsychological deficits can be found in patients with putative clinically silent cerebral infarction frequently. The term “uncovered” cerebral infarction may therefore be more accurate.

The detection of clinically uncovered brain infarcts is associated with an increased risk of clinically evident stroke and with the development of dementia. Patients with clinically silent cerebral infarction should therefore be screened for vascular risk factors and possible stroke etiology. Appropriate treatment measures should be implemented.

 
  • Literatur

  • 1 Vermeer SE, Longstreth WT, Koudstaal PJ. Silent brain infarcts: a systematic review. Lancet Neurol 2007; 6: 611-619
  • 2 Kovács KR, Czuriga D, Bereczki D et al. Silent brain infarction – a review of recent observations. Int J Stroke 2013; 8: 334-347
  • 3 Yoshida M, Tomitori H, Machi Y et al. IL-6 and CRP as markers of silent brain infarction. Atherosclerosis 2009; 203: 557-562
  • 4 Ishikawa J, Tamura Y, Hoshide S et al. Low-grade inflammation is a risk factor for clinical stroke events in addition to silent cerebral infarcts in Japanese older hypertensives: the Jichi Medical School ABPM Study, wave 1. Stroke 2007; 38: 911-917
  • 5 Nomura K, Hamamoto Y, Takahara S et al. Relationship between carotid intima-media thickness and silent cerebral infarction in Japanese subjects with type 2 diabetes. Diabetes Care 2010; 33: 168-170
  • 6 Sasaki M, Hirai T, Taoka T et al. Discriminating between silent cerebral infarction and deep white matter hyperintensity using combinations of three types of magnetic resonance images: a multicenter observer performance study. Neuroradiology 2008; 50: 753-758
  • 7 Kang D, Latour LL, Chalela JA et al. Early ischemic lesion recurrence within a week after acute ischemic stroke. Ann Neurol 2003; 54: 66-74
  • 8 Kang DW, Latour LL, Chalela JA et al. Early and late recurrence of ischemic lesion on MRI: evidence for a prolonged stroke-prone state?. Neurology 2004; 63: 2261-2265
  • 9 Nolte CH, Albach FN, Heuschmann PU et al. Silent new DWI lesions within the first week after stroke. Cerebrovasc Dis 2012; 33: 248-254
  • 10 Batool S, O’Donnell M, Sharma M et al. Incidental magnetic resonance diffusion-weighted imaging-positive lesions are rare in neurologically asymptomatic community-dwelling adults. Stroke 2014; 45: 2115-2117
  • 11 Fiebach JB, Schellinger PD, Jansen O et al. CT and diffusion-weighted MR imaging in randomized order: diffusion-weighted imaging results in higher accuracy and lower interrater variability in the diagnosis of hyperacute ischemic stroke. Stroke 2002; 33: 2206-2210
  • 12 Yamada K, Nagakane Y, Sasajima H et al. Incidental acute infarcts identified on diffusion-weighted images: a university hospital-based study. AJNR Am J Neuroradiol 2008; 29: 937-940
  • 13 Auriel E, Martinez-Ramirez S, Burol ME et al. Incidental diffusion-weighted imaging lesions in patients with cognitive decline. Stroke 2013; 44: AWMP116
  • 14 Kimberly WT, Gilson A, Rost NS et al. Silent ischemic infarcts are associated with hemorrhage burden in cerebral amyloid angiopathy. Neurology 2009; 72: 1230-1235
  • 15 Albach FN, Brunecker P, Usnich T et al. Complete early reversal of diffusion-weighted imaging hyperintensities after ischemic stroke is mainly limited to small embolic lesions. Stroke 2013; 44: 1043-1048
  • 16 Jouvent E, Poupon C, Gray F et al. Intracortical infarcts in small vessel disease: a combined 7-T postmortem MRI and neuropathological case study in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke 2011; 42: 27-30
  • 17 Smith EE, Schneider JA, Wardlaw JM et al. Cerebral microinfarcts: the invisible lesions. Lancet Neurol 2012; 11: 272-282
  • 18 Saini M, Ikram K, Hilal S et al. Silent stroke: not listened to rather than silent. Stroke 2012; 43: 3102-3104
  • 19 Reitz C, Schupf N, Luchsinger JA et al. Validity of self-reported stroke in elderly African Americans, Caribbean Hispanics, and Whites. Arch Neurol 2009; 66: 834-840
  • 20 Anderson NE, Mason DF, Fink JN et al. Detection of focal cerebral hemisphere lesions using the neurological examination. J Neurol Neurosurg Psychiatr 2005; 76: 545-549
  • 21 Jungehülsing GJ, Müller-Nordhorn J, Nolte CH et al. Prevalence of stroke and stroke symptoms: a population-based survey of 28,090 participants. Neuroepidemiology 2008; 30: 51-57
  • 22 Longstreth WT, Manolio TA, Arnold A et al. Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people. The Cardiovascular Health Study. Stroke 1996; 27: 1274-1282
  • 23 Ylikoski A, Erkinjuntti T, Raininko R et al. White matter hyperintensities on MRI in the neurologically nondiseased elderly. Analysis of cohorts of consecutive subjects aged 55 to 85 years living at home. Stroke 1995; 26: 1171-1177
  • 24 Vermeer SE, Koudstaal PJ, Oudkerk M et al. Prevalence and risk factors of silent brain infarcts in the population-based Rotterdam Scan Study. Stroke 2002; 33: 21-25
  • 25 DeCarli C, Massaro J, Harvey D et al. Measures of brain morphology and infarction in the framingham heart study: establishing what is normal. Neurobiol Aging 2005; 26: 491-510
  • 26 Kwon H, Kim BJ, Oh JY et al. Retinopathy as an indicator of silent brain infarction in asymptomatic hypertensive subjects. J Neurol Sci 2007; 252: 159-162
  • 27 Kawamura T, Umemura T, Kanai A et al. Soluble adhesion molecules and C-reactive protein in the progression of silent cerebral infarction in patients with type 2 diabetes mellitus. Metab Clin Exp 2006; 55: 461-466
  • 28 Kwon H, Kim BJ, Park J et al. Significant association of metabolic syndrome with silent brain infarction in elderly people. J Neurol 2009; 256: 1825-1831
  • 29 Bernick C, Kuller L, Dulberg C et al. Silent MRI infarcts and the risk of future stroke: the cardiovascular health study. Neurology 2001; 57: 1222-1229
  • 30 Aono Y, Ohkubo T, Kikuya M et al. Plasma fibrinogen, ambulatory blood pressure, and silent cerebrovascular lesions: the Ohasama study. Arterioscler Thromb Vasc Biol 2007; 27: 963-968
  • 31 Inoue K, Matsumoto M, Shono T et al. Increased intima media thickness and atherosclerotic plaques in the carotid artery as risk factors for silent brain infarcts. J Stroke Cerebrovasc Dis 2007; 16: 14-20
  • 32 Matsumoto M, Inoue K, Moriki A. Associations of brachial-ankle pulse wave velocity and carotid atherosclerotic lesions with silent cerebral lesions. Hypertens Res 2007; 30: 767-773
  • 33 Das RR, Seshadri S, Beiser AS et al. Prevalence and correlates of silent cerebral infarcts in the Framingham offspring study. Stroke 2008; 39: 2929-2935
  • 34 Anan F, Shimomura T, Kaku T et al. High-sensitivity C-reactive protein level is a significant risk factor for silent cerebral infarction in patients on hemodialysis. Metab Clin Exp 2008; 57: 66-70
  • 35 Kobayashi M, Hirawa N, Yatsu K et al. Relationship between silent brain infarction and chronic kidney disease. Nephrol Dial Transplant 2009; 24: 201-207
  • 36 Ma JF, Sun JL, Zhao J et al. Relationship between nocturnal blood pressure variation and silent cerebral infarction in Chinese hypertensive patients. J Neurol Sci 2010; 294: 67-69
  • 37 Serizawa M, Nabika T, Ochiai Y et al. Association between PRKCH gene polymorphisms and subcortical silent brain infarction. Atherosclerosis 2008; 199: 340-345
  • 38 Bokura H, Yamaguchi S, Iijima K et al. Metabolic syndrome is associated with silent ischemic brain lesions. Stroke 2008; 39: 1607-1609
  • 39 Takashima Y, Miwa Y, Mori T et al. Sex differences in the risk profile and male predominance in silent brain infarction in community-dwelling elderly subjects: the Sefuri brain MRI study. Hypertens Res 2010; 33: 748-752
  • 40 Otani H, Kikuya M, Hara A et al. Association of kidney dysfunction with silent lacunar infarcts and white matter hyperintensity in the general population: the Ohasama study. Cerebrovasc Dis 2010; 30: 43-50
  • 41 Bots ML, Sutton-Tyrrell K. Lessons from the past and promises for the future for carotid intima-media thickness. J Am Coll Cardiol 2012; 60: 1599-1604
  • 42 van den Oord SCH, Sijbrands EJG, ten Kate GL et al. Carotid intima-media thickness for cardiovascular risk assessment: systematic review and meta-analysis. Atherosclerosis 2013; 228: 1-11
  • 43 Mathiesen EB, Waterloo K, Joakimsen O et al. Reduced neuropsychological test performance in asymptomatic carotid stenosis: The Tromsø Study. Neurology 2004; 62: 695-701
  • 44 Kakkos SK, Sabetai M, Tegos T et al. Silent embolic infarcts on computed tomography brain scans and risk of ipsilateral hemispheric events in patients with asymptomatic internal carotid artery stenosis. J Vasc Surg 2009; 49: 902-909
  • 45 Hara M, Ooie T, Yufu K et al. Silent cortical strokes associated with atrial fibrillation. Clin Cardiol 1995; 18: 573-574
  • 46 Kwon H, Kim BJ, Lee S et al. Metabolic syndrome as an independent risk factor of silent brain infarction in healthy people. Stroke 2006; 37: 466-470
  • 47 Park K, Yasuda N, Toyonaga S et al. Significant associations of metabolic syndrome and its components with silent lacunar infarction in middle aged subjects. J Neurol Neurosurg Psychiatr 2008; 79: 719-721
  • 48 Schiffrin EL, Lipman ML, Mann JFE. Chronic kidney disease: effects on the cardiovascular system. Circulation 2007; 116: 85-97
  • 49 Chou C, Lien L, Chen W et al. Adults with late stage 3 chronic kidney disease are at high risk for prevalent silent brain infarction: a population-based study. Stroke 2011; 42: 2120-2125
  • 50 Minoguchi K, Yokoe T, Tazaki T et al. Silent brain infarction and platelet activation in obstructive sleep apnea. Am J Respir Crit Care Med 2007; 175: 612-617
  • 51 Gottesman RF, Cummiskey C, Chambless L et al. Hemostatic factors and subclinical brain infarction in a community-based sample: the ARIC study. Cerebrovasc Dis 2009; 28: 589-594
  • 52 Oncel C, Demir S, Güler S et al. Association between cholesterols, homocysteine and silent brain infarcts. Intern Med J 2009; 39: 150-155
  • 53 Kato T, Inoue T, Yamagishi S et al. Low-density lipoprotein subfractions and the prevalence of silent lacunar infarction in subjects with essential hypertension. Hypertens Res 2006; 29: 303-307
  • 54 Fukunaga N, Anan F, Kaneda K et al. Lipoprotein (a) as a risk factor for silent cerebral infarction in hemodialysis patients. Metab Clin Exp 2008; 57: 1323-1327
  • 55 Bendszus M, Stoll G. Silent cerebral ischaemia: hidden fingerprints of invasive medical procedures. Lancet Neurol 2006; 5: 364-372
  • 56 Spiotta AM, Wheeler AM, Smithason S et al. Comparison of techniques for stent assisted coil embolization of aneurysms. J Neurointerv Surg 2012; 4: 339-344
  • 57 Brooks NP, Turk AS, Niemann DB et al. Frequency of thromboembolic events associated with endovascular aneurysm treatment: retrospective case series. J Neurosurg 2008; 108: 1095-1100
  • 58 Dukkipati S, O’Neill WW, Harjai KJ et al. Characteristics of cerebrovascular accidents after percutaneous coronary interventions. J Am Coll Cardiol 2004; 43: 1161-1167
  • 59 Cook DJ, Huston J, Trenerry MR et al. Postcardiac surgical cognitive impairment in the aged using diffusion-weighted magnetic resonance imaging. Ann Thorac Surg 2007; 83: 1389-1395
  • 60 McKhann GM, Grega MA, Borowicz LM et al. Stroke and encephalopathy after cardiac surgery: an update. Stroke 2006; 37: 562-571
  • 61 Knipp SC, Schlamann M, Thielmann M et al. Silent and apparent cerebral ischemia after percutaneous transfemoral aortic valve implantation: a diffusion-weighted magnetic resonance imaging study. Circulation 2010; 121: 870-878
  • 62 Rodés-Cabau J, Dumont E, Boone RH et al. Cerebral embolism following transcatheter aortic valve implantation: comparison of transfemoral and transapical approaches. J Am Coll Cardiol 2011; 57: 18-28
  • 63 Rosenkranz M, Thomalla G, Havemeister S et al. Older age and greater carotid intima-media thickness predict ischemic events associated with carotid-artery stenting. Cerebrovasc Dis 2010; 30: 567-572
  • 64 Haeusler KG, Kirchhof P, Endres M. Left atrial catheter ablation and ischemic stroke. Stroke 2012; 43: 265-270
  • 65 Haeusler KG, Koch L, Herm J et al. 3 Tesla MRI-detected brain lesions after pulmonary vein isolation for atrial fibrillation: results of the MACPAF study. J Cardiovasc Electrophysiol 2013; 24: 14-21
  • 66 Bonati LH, Jongen LM, Haller S et al. New ischaemic brain lesions on MRI after stenting or endarterectomy for symptomatic carotid stenosis: a substudy of the International Carotid Stenting Study (ICSS). Lancet Neurol 2010; 9: 353-362
  • 67 Herm J, Fiebach JB, Koch L et al. Neuropsychological effects of MRI-detected brain lesions after left atrial catheter ablation for atrial fibrillation: long-term results of the MACPAF study. Circ Arrhythm Electrophysiol 2013; 6: 843-850
  • 68 Floyd TF, Shah PN, Price CC et al. Clinically silent cerebral ischemic events after cardiac surgery: their incidence, regional vascular occurrence, and procedural dependence. Ann Thorac Surg 2006; 81: 2160-2166
  • 69 Mohan KM, Wolfe CDA, Rudd AG et al. Risk and cumulative risk of stroke recurrence: a systematic review and meta-analysis. Stroke 2011; 42: 1489-1494
  • 70 Kang D, Lattimore SU, Latour LL et al. Silent ischemic lesion recurrence on magnetic resonance imaging predicts subsequent clinical vascular events. Arch Neurol 2006; 63: 1730-1733
  • 71 Coutts SB, Hill MD, Simon JE et al. Silent ischemia in minor stroke and TIA patients identified on MR imaging. Neurology 2005; 65: 513-517
  • 72 Bal S, Patel SK, Almekhlafi M et al. High rate of magnetic resonance imaging stroke recurrence in cryptogenic transient ischemic attack and minor stroke patients. Stroke 2012; 43: 3387-3388
  • 73 Usnich T, Albach FN, Brunecker P et al. Incidence of new diffusion-weighted imaging lesions outside the area of initial hypoperfusion within 1 week after acute ischemic stroke. Stroke 2012; 43: 2654-2658
  • 74 Braemswig TB, Usnich T, Albach FN et al. Early new diffusion-weighted imaging lesions appear more often in stroke patients with a multiple territory lesion pattern. Stroke 2013; 44: 2200-2204