Endoscopically visualized features of gastric submucosal tumors on submucosal endoscopy

Difficulties in the preoperative diagnosis of gastrointestinal submucosal tumors by endoscopic ultrasonography and errors of tissue sampling may make invasive surgery [1] or endoscopic resection [2] inappropriate for their removal. Better methods of diagnosing submucosal tumors are therefore needed. We have found that bloc biopsy and use of the submucosal endoscopy with a mucosal flap (SEMF) method [3] under direct vision can assist in the diagnosis of submucosal tumors [4,5]. This method has the advantage of assessing the macroscopic characteristics of submucosal tumors. These endoscopically visualized features, identified by endoscopic imaging under direct view through a dissected submucosal tunnel, include the color, clarity, shape, and solidity of the tumor. Here, we describe the representative endoscopically visualized features of different types of gastric submucosal tumors.

Bloc biopsy with the SEMF method consists of five major steps: SEMF, endoscopic submucosal dissection, bloc biopsy to acquire a specimen of sufficient size, tissue collection, and clip closure of the entry point. After the creation of a tunnel into the submucosa toward the tumor, the endoscopically visualized features of a submucosal tumor can be identified in the submucosa (Fig. 1). The solidity of a submucosal tumor can be assessed by applying pressure to the tumor with the needle-knife. Different types of submucosal tumors can be classified according to four endoscopically visualized features: color, clarity, shape, and solidity. Gastrointestinal stromal tumors (GISTs) are white, cloudy, round, rigid tumors; leiomyomas are white, clear, round, elastic but hard tumors; heterotopic pancreatic tissue tumors are yellowish, multinodular, soft tumors with surface features specific to pancreatic tissue; gastric cysts are bluish, clear, round, soft tumors with wet surfaces; and lipomas are yellow, soft tumors with characteristics similar to those of adipose tissue.

Submucosal tumors may be classified on the basis of features seen at submucosal endoscopy. These features may have diagnostic value that allows avoidance of unnecessary surgery (Video 1).

Video 1
First, a bloc biopsy is obtained with the submucosal endoscopy mucosal flap method, which creates a short tunnel via an additional submucosal dissection to access the tumor. Next, the endoscopically visualized features of each submucosal tumor can be visually identified in the submucosa. The video shows representative endoscopically visualized features of different types of gastric submucosal tumors. Gastrointestinal stromal tumors are white, cloudy, round, rigid tumors; leiomyomas are white, clear, round, elastic but hard tumors. Heterotopic pancreatic tissue tumors are yellowish, multinodular, soft tumors with surface features specific to pancreatic tissue; gastric cysts are bluish, clear, round, soft tumors with wet surfaces; and lipomas are yellow, soft tumors with characteristics similar to those of adipose tissue.
Endoscopy_UCTN_Code_TTT_1AO_2AC

Competing interests: None

Hideki Kobara, Hirohito Mori, Shintaro Fujihara, Noriko Nishiyama, Johji Tani, Asahiro Morishita, Makoto Oryu, Kunihiko Tsutsui, Tsutomu Masaki

Department of Gastroenterology and Neurology, Kagawa Medical University School of Medicine, Kagawa, Japan

References


Bibliography


Corresponding author

Hideki Kobara, MD, PhD
Department of Gastroenterology and Neurology
Kagawa Medical University School of Medicine
1750-1 Ikenobe, Miki, Kita
Kagawa 761-0793
Japan
Fax: +81-87-891-2158 kobara@mail.med.kagawa-u.ac.jp

Fig. 5 Gastric cyst characteristics at submucosal endoscopy: typically bluish, clear, round, soft tumors with wet surfaces.

Fig. 6 Lipoma characteristics at submucosal endoscopy: typically yellow, soft tumors with adipose tissue-like characteristics.

5 Kobara H, Mori H, Fujihara S et al. Bloc biopsy by using submucosal endoscopy with a mucosal flap method for gastric subepithelial tumor tissue sampling (with video). Gastrointest Endosc 2013; 77: 141 – 145