Endoscopic ultrasonography-guided liver abscess drainage using a dedicated, wide, fully covered self-expandable metallic stent with flared-ends

Endoscopic ultrasonography (EUS)-guided drainage of liver abscesses has recently become available. We present here a case of successful drainage of a liver abscess using a dedicated wide fully covered self-expandable metallic stent (FCSEMS) with flared ends.

An 84-year-old man was admitted to another hospital with a history of high fever and epigastric pain for 12 days. Computed tomography (CT) revealed a 10.3 × 6.1-cm abscess in the left lobe of the liver (Fig. 1). He was referred to our hospital because of failure of a 1-week antibiotic regimen. Esophagogastroduodenoscopy revealed a bulging mass in the stomach (Fig. 2).

We attempted EUS-guided drainage through a transgastric approach. Using a 19-gauge needle, we punctured the abscess and placed a 0.025-inch guidewire (Fig. 3). A 6-Fr wire-guided diathermic dilator (Cysto-Gastro-Set; Endo-Flex, Voerde, Germany) was used to dilate the needle tract using a blended cut mode. Finally, a dedicated wide FCSEMS with flared ends (NAGI stent, 16 × 3 cm; Taewoong-Medical, Seoul, Korea) was placed, without any complications (Fig. 4, Fig. 5). After stone clearance from the common bile duct, the patient was discharged on post-operative day 10 without removal of the SEMS (Fig. 6).

Seven cases of EUS-guided drainage of liver abscesses, including one case of multiple abscesses, have been reported to date [1, 2]. The left lobe of the liver, the caudate lobe, and the gastrohepatic space usually lie in close proximity to the stomach or duodenum [1]. Therefore, EUS-guided liver abscess drainage might be safe and effective in the management of these areas. Single or double plastic stents were used in most of the reported cases [1]; the newly designed dedicated anchoring FCSEMS with a “yo-yo” shape was placed in only one patient [2]. It has been suggested that a dedicated FCSEMS is the ideal stent for treating liver abscesses and pancreatic fluid collection because of its antimigration feature and because it allows direct insertion of an endoscope through it [3].

Competing interests: None
Hiroshi Kawakami¹, Kazumichi Kawakubo², Masaki Kuwatani³, Yoshimasa Kubota¹, Yoko Abe¹, Shuhei Kawahata¹, Kimitoshi Kubo¹, Naoya Sakamoto²

¹ Department of Gastroenterology and Hepatology, Hokkaido University Hospital
² Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
³ Division of Endoscopy, Hokkaido University Hospital

References

Bibliography
DOI http://dx.doi.org/10.1055/s-0034-1391125
Endoscopy 2014; 46: E982–E983
© Georg Thieme Verlag KG Stuttgart · New York
ISSN 0013-726X

Corresponding author
Hiroshi Kawakami, MD, PhD
Department of Gastroenterology and Hepatology
Hokkaido University Hospital
Kita 14, Nishi 5, Kita-ku
Sapporo 060-8648
Japan
Fax: +81-11-7067867
hiropon@med.hokudai.ac.jp

Fig. 4 The dedicated, wide, fully covered self-expandable metallic stent (FCSEMS) with flared ends (NAGI stent; Taewoong-Medical, Seoul, Korea)

Fig. 5 Radiograph showing placement of the NAGI stent into the cavity of the liver abscess. Inset: endoscopic view of the purpose-designed stent.

Fig. 6 Endoscopic view through the NAGI stent on postoperative day 8, showing only necrotic tissues on the surface of the liver.