Endoscopic ultrasonography-guided liver abscess drainage using a dedicated, wide, fully covered self-expandable metallic stent with flared-ends

Endoscopic ultrasonography (EUS)-guided drainage of liver abscesses has recently become available. We present here a case of successful drainage of a liver abscess using a dedicated wide fully covered self-expandable metallic stent (FCSEMS) with flared ends. An 84-year-old man was admitted to another hospital with a history of high fever and epigastric pain for 12 days. Computed tomography (CT) revealed a 10.3×6.1-cm abscess in the left lobe of the liver (Fig. 1). He was referred to our hospital because of failure of a 1-week antibiotic regimen. Esophagastroduodenoscopy revealed a bulging mass in the stomach (Fig. 2). We attempted EUS-guided drainage through a transgastric approach. Using a 19-gauge needle, we punctured the abscess and placed a 0.025-inch guidewire (Fig. 3). A 6-Fr wire-guided diathermic dilator (Cysto-Gastro-Set; Endo-Flex, Voerde, Germany) was used to dilate the needle tract using a blended cut mode. Finally, a dedicated wide FCSEMS with flared ends (NAGI stent, 16×3 cm; Taewoong Medical, Seoul, Korea) was placed, without any complications (Fig. 4, Fig. 5). After stone clearance from the common bile duct, the patient was discharged on postoperative day 10 without removal of the SEMS (Fig. 6).

Seven cases of EUS-guided drainage of liver abscesses, including one case of multiple abscesses, have been reported to date [1, 2]. The left lobe of the liver, the caudate lobe, and the gastrohepatic space usually lie in close proximity to the stomach or duodenum [1]. Therefore, EUS-guided liver abscess drainage might be safe and effective in the management of these areas. Single or double plastic stents were used in most of the reported cases [1]; the newly designed dedicated anchoring FCSEMS with a “yo-yo” shape was placed in only one patient [2]. It has been suggested that a dedicated FCSEMS is the ideal stent for treating liver abscesses and pancreatic fluid collection because of its antimigration feature and because it allows direct insertion of an endoscope through it [3].

Competing interests: None
Hiroshi Kawakami1, Kazumichi Kawakubo2, Masaki Kuwatani3, Yoshimasa Kubota1, Yoko Abe1, Shuhei Kawahata1, Kimitoshi Kubo1, Naoya Sakamoto2

1 Department of Gastroenterology and Hepatology, Hokkaido University Hospital
2 Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
3 Division of Endoscopy, Hokkaido University Hospital

References

Bibliography
DOI http://dx.doi.org/10.1055/s-0034-1391125
Endoscopy 2014; 46: E982–E983
© Georg Thieme Verlag KG
Stuttgart · New York
ISSN 0013-726X

Corresponding author
Hiroshi Kawakami, MD, PhD
Department of Gastroenterology and Hepatology
Hokkaido University Hospital
Kita 14, Nishi 5, Kita-ku
Sapporo 060-8648
Japan
Fax: +81-11-7067867
hiropon@med.hokudai.ac.jp

Fig. 4 The dedicated, wide, fully covered self-expandable metallic stent (FCSEMS) with flared ends (NAGI stent; Taewoong-Medical, Seoul, Korea)

Fig. 5 Radiograph showing placement of the NAGI stent into the cavity of the liver abscess. Inset: endoscopic view of the purpose-designed stent.

Fig. 6 Endoscopic view through the NAGI stent on postoperative day 8, showing only necrotic tissues on the surface of the liver.

Fig. 4

Fig. 5

Fig. 6