Endoscopic full-thickness resection in the colorectum with a novel over-the-scope device: first experience

Background and study aims: Endoscopic full-thickness resection (EFTR) in the lower gastrointestinal tract may be a valuable therapeutic and diagnostic approach for a variety of indications. Although feasibility of EFTR has been demonstrated, there is a lack of safe and effective endoscopic devices for routine use. The aim of this study was to investigate the efficacy and safety of a novel over-the-scope device for colorectal EFTR.

Patients and methods: Between July 2012 and July 2014, 25 patients underwent EFTR at two tertiary referral centers. All resections were performed using the full-thickness resection device (FTRD; Ovesco Endoscopy, Tübingen, Germany). Data were collected retrospectively.

Results: Indications for EFTR were: recurrent or incompletely resected adenoma with nonlifting sign (n=11), untreated adenoma and nonlifting sign (n=2), adenoma involving the appendix (n=5), flat adenoma in a patient with coagulopathy (n=1), diagnostic re-resection after incomplete resection of a T1 carcinoma (n=2), adenoma involving a diverticulum (n=1), submucosal tumor (n=2), and diagnostic resection in a patient with suspected Hirschsprung’s disease (n=1). In one patient, the lesion could not be reached because of a sigmoid stenosis. In the other patients, resection of the lesion was macroscopically complete and en bloc in 20/24 patients (83.3%). The mean diameter of the resection specimen was 24mm (range 12–40mm). The R0 resection rate was 75.0% (18/24), and full-thickness resection was histologically confirmed in 87.5%. No perforations or major bleeding were observed during or after resection. Two patients developed postpolypectomy syndrome, which was managed with antibiotics.

Conclusions: Full-thickness resection in the lower gastrointestinal tract with the novel FTRD was feasible and effective. Prospective studies are needed to further evaluate the device and technique.
been investigated in preclinical trials. Moreover, a small recently
published series demonstrated successful resection of recurrent
adenomas in three patients, and a case report described resection
of an adenoma arising from a diverticulum [8–13]. The current
report describes the clinical experience from two centers using
this device for EFTR in the lower gastrointestinal (GI) tract.

Patients and methods

Study design and patients

This study was a retrospective study conducted at two European
tertiary referral centers. Between July 2012 and July 2014, 25 pa-
tients underwent EFTR using the FTRD. Outcome measures were:
1) technical success (target lesion resected en bloc and macroscopi-
cally complete); 2) R0 resection rate (proportion of patients with
negative lateral and deep margins on histological examina-
tion); 3) full-thickness resection rate (proportion of patients with
histologically confirmed full-thickness resection); 4) adverse
event rates.

Written informed consent was obtained from all patients. The
study was performed in accordance with the declaration of Hel-
sinki. The FTRD was provided by Ovesco Endoscopy, Tübingen,
Germany. The study was not funded.

Description of device

The FTRD is a pre-assembled over-the-scope device (Fig. 1). A
transparent cap with a modified 14-mm OTSC is mounted over a
standard colonoscope. The cap has an inner diameter of 13 mm
and a length of 23 mm (measured from the tip of the endoscope).
A monofilament 14-mm polypectomy snare is preloaded onto
the tip of the cap. The snare is not advanced through the working
channel but rather runs along the outer surface of the endoscope
under a plastic sheath. This sheath is fixed onto the cap and
pulled over the scope shaft after mounting the cap.

The device has a Conformité Européenne mark and is commer-
cially available in Europe. It has not yet been approved by the
Food and Drug Administration.

Resection technique

The endoscope with the mounted FTRD is introduced into the co-
lon and the target lesion is identified. A grasping forceps or a tis-
sue anchor (Ovesco Endoscopy) is advanced through the working
channel of the endoscope to grasp the lesion. The lesion is slowly
pulled into the cap in order to capture a double full-thickness lay-
er of the colonic wall. With the lateral margins of the lesion
pulled into the cap, the OTSC is deployed. The pseudopolyp cre-
ated by the OTSC is then resected using the pre-loaded snare
while the OTSC secures integrity of the colonic wall (for schemat-
ic illustration of the technique, see Fig. 2).

Procedures and periprocedural management

Before resection, all patients underwent physical examination,
and blood tests were obtained to check for coagulopathy. Preo-
perative endoscopic ultrasound and/or computed tomography
(CT) were only performed in patients with malignant (T1) lesions
to exclude deep wall infiltration and metastatic disease.

All procedures were performed under deep sedation (midazolam
bolus and continuous propofol infusion) without endotracheal
intubation. Blood pressure, electrocardiogram, and oxygen sa-
turation were constantly monitored during the procedure. All pa-
tients received prophylactic antibiotic therapy (intravenous ci-
profloxacin and metronidazole twice a day for 3 days starting im-
mEDIATELY before the procedure). All procedures were performed
by experienced endoscopists.

Prior to resection, the target lesion was identified with a standard
colonoscope. In the majority of patients, the lateral margins were
marked using argon plasma coagulation; in case of flat adeno-
mas, staining with toluidine blue was performed. The endo-
scope was extracted from the patient and the FTRD was mounted
onto the scope. The endoscope with the mounted FTRD was rein-
troduced into the patient and advanced to the target lesion. The
lesion was then resected as described above and the endoscope
was extracted with the resection specimen in the cap. The FTRD
was removed from the scope, and after re-inserting the endo-
scope, the resection site was inspected (Fig. 3, Video 1).

After the procedure, patients were hospitalized for at least two
ights and were closely monitored for clinical signs of bleeding
(hematochezia) or perforation (daily abdominal examination).
Abdominal radiography was performed in patients with postpro-
cedural clinical signs of perforation or peritonitis only. Patients
were started on clear liquids 3–6 hours after the procedure if
there were no signs of peritonitis. A normal diet was usually
started the following day (postoperative Day 1).
Follow-up
Patients were scheduled for the first endoscopic follow-up within 3–6 months after resection. Further follow-ups were scheduled individually depending on histology and endoscopic findings.

Results

Patient characteristics and indications for EFTR
Between July 2012 and July 2014, 25 Patients underwent EFTR using the FTRD at two academic tertiary referral centers. The mean age was 70 years (range 43–84 years). In the majority of patients, the indication for EFTR was a nonlifting adenoma (13/25), which included nine patients with recurrent adenomas, two patients with incompletely resected adenomas, and two patients with previously untreated adenomas. One additional patient had a flat (lifting) adenoma but increased risk of bleeding because of coagulopathy. Six patients had adenomas at difficult anatomic locations, including five patients with lesions involving the appendix and one patient with an adenoma involving a diverticulum. Diagnostic EFTR was performed in two patients with incompletely resected T1 carcinoma and in one patient with suspected Hirschsprung’s disease.

Procedural data, technical success, and histopathology
The median procedure time was 50 minutes (range 10–177 minutes). This included advancing the scope to the lesion, marking the lesion, advancing the endoscope with the mounted FTRD, resection, reintroducing the scope without the FTRD, and inspection of the resection site.

In a patient with history of diverticulitis, the target lesion could not be reached because the FTRD could not be advanced beyond a sigmoid stenosis. Lesions in the remaining 24 patients were reached using the FTRD, and in 20 of the lesions resection was macroscopically complete and en bloc. Hence, the technical success rate was 83.3%. The reasons for technically unsuccessful resection were an adenoma at the appendix (n=2), which prevented complete en bloc resection with the FTRD (the preloaded snare did not close properly after deployment of the OTSC [n=1]; the lesion could not be pulled completely into the cap [n=1]). In these two cases, the FTRD was retrieved and the residual adenoma above the OTSC was completely resected using a standard monofilament snare after reintroducing the endoscope. Histology was classified as “Rx” (indeterminate) for piecemeal resection.

In a patient with a recurrent rectal adenoma, the rectal wall could not be pulled completely into the cap, which resulted in residual adenoma next to the OTSC. In the fourth patient, who had recurrent adenoma in the ascending colon, the lesion could not be completely pulled into the cap because of fibrosis, resulting in residual adenoma above the OTSC; this was also resected using a snare. The mean size of the resection specimen (maximum diameter, determined by the pathologist) was 24 mm (range 12–40 mm) (Table 2). In the 24 specimens, histologically complete resection (defined as lateral and deep margins free of adenoma/tumor cells) was confirmed in 18 cases (75.0%). One patient with a lesion at the appendix had adenoma cells at the lateral resection margins. In another patient with a nonlifting lesion, histology after diagnostic resection revealed adenocarcinoma at the lateral resection margins. Histology of the two patients with submucosal tumors revealed leiomyoma in one case and hamartoma in the other case. In the two patients with T1 carcinomas who underwent re-resection using the FTRD, histology did not show any remnant carcinoma or adenoma, and no further therapy was scheduled. In the patient with suspected Hirschsprung’s disease, aganglionosis was not evident in the resection specimen.

Adverse events
Minor bleeding at the resection site was observed in one patient (Table 2). Hemostasis was achieved by endoscopic injection of epinephrine solution. No major immediate or delayed bleeding was observed, and no patient required blood transfusion. There was no perforation or need for emergency surgery.
Two patients with adenomas in the cecum developed abdominal pain, fever, and elevation of C-reactive protein after the intervention. In both patients, colonic perforation was excluded by radiography. One of these patients also underwent a CT scan, which showed thickening of the cecal wall with no evidence of perforation, abscess, or appendicitis. Both patients were treated with intravenous antibiotics for 1 week and recovered completely after 3–4 days. No other adverse events were observed.

Clinical outcome and follow-up:
Endoscopic follow-up was available for 19 patients. In six patients, follow-up could not be obtained for the following reasons: one patient with known liver cirrhosis died 2 months after resection (liver failure); two patients underwent hemicolectomy for...
adenocarcinoma with high risk features; one patient refused further follow-up; and two patients missed follow-up appointments and had to be re-scheduled. In 7 of 19 patients (36.8 %), the OTSC was in place at the first follow-up, but in 12 patients (63.2 %) it had dislodged spontaneously. The mean follow-up period was 127 days (range 43–372 days).

In the patients with initial successful R0 resection, one recurrent adenoma was observed at the appendiceal orifice at 3-months’ follow-up. This recurrence was not visible macroscopically but was diagnosed histologically in the biopsies taken from the resection site. This patient was scheduled for another EFTR (procedure not yet done at time of manuscript preparation). In one patient with a previously untreated nonlifting lesion, histology after EFTR showed a completely resected adenocarcinoma with invasion of lymphatic vessels (L1). This patient was referred to surgery for resection. The surgical resection specimen did not show any residual tumor.

The clinical courses of patients with macroscopically or histologically incomplete resection were as follows. Histology of the patient mentioned above with a nonlifting, previously untreated lesion in the descending colon showed adenocarcinoma. As one lateral margin of the resection specimen was not free of tumor cells (Rx) and the carcinoma showed deep (sm3) submucosal invasion, the patient was referred for hemicolectomy; histology of the resected colon, however, did not show any residual tumor or lymph node metastasis. The two patients with incomplete resection of adenomas at the appendix underwent endoscopic follow-up at 3 months. In both patients, the OTSC had fallen off; residual adenoma was successfully resected using forceps in one case and the FTRD in the other case. Further follow-up is still pending. Another patient with microscopically Rx resection (lateral margins) of an adenoma with low grade dysplasia at the appendix did not show any residual adenoma at follow-up after 3 months. Two patients with recurrent adenomas in the rectum and in the ascending colon had small residual adenomas (max. 5 mm) at 6 months’ follow-up, which were successfully resected using a snare. Further follow-up did not show any residual or recurrent adenoma.

Discussion

The majority of advanced, colonic, nonpedunculated neoplasms can be treated effectively by modern resection techniques such as EMR or ESD. However, endoscopic resection of recurrent nonlifting (or previously untreated) lesions remains a challenge. ESD has been shown to be feasible for such lesions, but the perforation rate has been reported to be up to 14.7 % [2, 3]. Moreover, ESD is technically demanding, requires a substantial amount of training, and is time consuming even in experienced hands. EFTR using a clip-and-cut technique may offer a simpler and time-efficient modality for the treatment of these lesions. Resection with the FTRD can be performed by endoscopists with experience in OTSC application and advanced resection techniques. The median procedure time in this study was 50 minutes including the marking, resection and re-inspection; the resection procedure itself takes about 10 minutes. Compared with EMR or ESD, the diagnostic yield of EFTR may be higher because the pathologist receives a full-thickness (en bloc) resection specimen. In cases of T1 carcinomas, this allows exact determination of submucosal infiltration and R0 status. For this situation, the FTRD can be used as a simple diagnostic tool or for tissue acquisition, and may also be therapeutic in low risk situations. T1 carcinomas with known high risk features such as poor differentiation or deep submucosal infiltration (> 1000 μm) should, of course, not be treated with EFTR as these lesions definitively require oncological resection.

Apart from the indications mentioned above, EFTR can also be used for resection of adenomas at difficult anatomic locations, such as adenomas involving a diverticulum [13] or adenomas arising from the appendiceal orifice. In these cases, EFTR may be a minimally invasive and potentially more cost-effective alternative to surgical therapy. Another indication for EFTR is resection of small subepithelial tumors (e.g. neuroendocrine tumors) in the lower GI tract. Moreover, the FTRD can be used for acquisition

Table 1 Patient characteristics (n=25).

<table>
<thead>
<tr>
<th>Variable</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total no. of patients</td>
<td>25</td>
</tr>
<tr>
<td>Age, mean (range), years</td>
<td>70 (43–84)</td>
</tr>
<tr>
<td>Indication for EFTR, n (%)</td>
<td></td>
</tr>
<tr>
<td>Recurrent adenoma with nonlifting sign</td>
<td>9 (36)</td>
</tr>
<tr>
<td>Untreated adenoma with nonlifting sign</td>
<td>2 (8)</td>
</tr>
<tr>
<td>Incompletely resected adenoma with nonlifting sign</td>
<td>2 (8)</td>
</tr>
<tr>
<td>Flat adenoma in a patient with severe coagulopathy</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Diagnostic re-resection after incomplete resection of T1 carcinoma</td>
<td>2 (8)</td>
</tr>
<tr>
<td>Adenoma involving appendix</td>
<td>5 (20)</td>
</tr>
<tr>
<td>Adenoma involving diverticulum</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Submucosal tumor</td>
<td>2 (8)</td>
</tr>
<tr>
<td>Diagnostic EFTR for suspected Hirschsprung’s disease</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Estimated diameter of lesions, mean (range), mm</td>
<td>15.6 (8–30)</td>
</tr>
<tr>
<td>Histology prior to EFTR, n</td>
<td></td>
</tr>
<tr>
<td>Adenoma with low grade dysplasia</td>
<td>10 (40)</td>
</tr>
<tr>
<td>Adenoma with high grade dysplasia</td>
<td>10 (40)</td>
</tr>
<tr>
<td>Adenocarcinoma (T1)</td>
<td>2 (8)</td>
</tr>
<tr>
<td>Histology not obtained</td>
<td>3 (12)</td>
</tr>
<tr>
<td>Resection site location, n (%)</td>
<td></td>
</tr>
<tr>
<td>Cecum</td>
<td>5 (20)</td>
</tr>
<tr>
<td>Ascending colon</td>
<td>5 (20)</td>
</tr>
<tr>
<td>Transverse colon</td>
<td>3 (12)</td>
</tr>
<tr>
<td>Descending colon</td>
<td>4 (16)</td>
</tr>
<tr>
<td>Sigmoid</td>
<td>2 (8)</td>
</tr>
<tr>
<td>Rectosigmoid transition</td>
<td>3 (12)</td>
</tr>
<tr>
<td>Rectum</td>
<td>2 (8)</td>
</tr>
</tbody>
</table>

EFTR, endoscopic full-thickness resection.
1 Two patients with submucosal tumors, one with suspected Hirschsprung’s disease.

Table 2 Outcome and adverse events (n = 25).

<table>
<thead>
<tr>
<th>Event</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target lesion reached with FTRD</td>
<td>24/25 (96.0)</td>
</tr>
<tr>
<td>Technical success, n (%)</td>
<td>20/24 (83.3)</td>
</tr>
<tr>
<td>Diameter of resection specimen, mean (range), mm</td>
<td>24 (12–40)</td>
</tr>
<tr>
<td>Histology, n (%)</td>
<td></td>
</tr>
<tr>
<td>Complete resection (R0)</td>
<td>18/24 (75.0)</td>
</tr>
<tr>
<td>Full-thickness resection</td>
<td>21/24 (87.5)</td>
</tr>
<tr>
<td>Adverse events, n (%)</td>
<td></td>
</tr>
<tr>
<td>Minor bleeding</td>
<td>1 (4.0)</td>
</tr>
<tr>
<td>Requirement for blood transfusion</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Perforation</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Need for emergency surgery</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Postpolypectomy syndrome</td>
<td>2 (8.0)</td>
</tr>
<tr>
<td>Duration of hospital stay, mean (range), days</td>
<td>4 (1–12)</td>
</tr>
<tr>
<td>Follow-up</td>
<td></td>
</tr>
<tr>
<td>Duration, mean (range), days</td>
<td>127 (43–372)</td>
</tr>
<tr>
<td>Residual adenoma, n</td>
<td>4 (16)</td>
</tr>
<tr>
<td>Local recurrence, n</td>
<td>1 (4)</td>
</tr>
</tbody>
</table>

FTRD, full-thickness resection device.
of a full-thickness specimen in patients with suspected colonic motility disorders, such as Hirschsprung’s disease. Compared with conventional full-thickness biopsies, a large resection specimen may facilitate histological diagnosis of aganglionosis in these patients.

The effectiveness of OTSCs for closure of GI perforations and leakages has been well investigated [14–16]. The concept of using a conventional OTSC for defect closure after full-thickness resection has been shown to be feasible in porcine colonic experiments and in a recent clinical study investigating EFTR of gastric subepithelial gastric tumors [17, 18]. In contrast to post-EFTR wall closure with conventional through-the-scope clips or T-tags [19, 20], the OTSC allows single-step defect closure, which may be more time efficient than a step-by-step procedure. In contrast to secondary closure of the defect after EFTR, securing GI wall patency before resection may be a safer approach, as contamination of the abdominal cavity by colonic contents can be avoided [21, 22]. Moreover, a secure GI wall closure prior to resection would render laparoscopic assistance (as described in the study by Schlag et al. [18]) unnecessary.

Resection of lesions in the upper GI tract and in the colorectum by application of a conventional 11/64 OTSC followed by snare resection was recently shown to be feasible [5–7]. The main difference with the FTRD is the preloaded snare in the cap, which allows one-step resection immediately after OTSC deployment, leading to further simplification and acceleration of the procedure. The FTRD cap is equipped with a modified 14-mm OTSC and enables the capture of more tissue, as it is longer (23 mm) and wider (13 mm diameter). The amount of tissue that can be pulled into the cap determines the size of the resection. In preclinical porcine experiments, the maximum size of colonic resection specimens was 30×30 and 40×42 mm [8, 11]; one recent study even reported an average diameter of 54 mm [9]. However, these experiments were performed on healthy colonic tissue. Thickness, rigidity, and mobility of the colonic wall may differ in “real life” and strongly depend on anatomic location and presence of fibrosis/inflammation caused by pre-treatment. This is indeed reflected by the mean size of the resection specimen in the current study, which was 24 mm (range 12–40 mm).

On the basis of the current data, we would not recommend the use of the FTRD for the resection of lesions >30 mm. In cases of severe scarring or inflammation, the maximum size of the lesion may be even less (20–25 mm). Rigidity and mobility of the GI wall also influences resection depth. In the current series, full-thickness resection of the colonic wall could not be confirmed histologically in three patients. This was due to fibrosis in two cases and to limited mobility of the lower rectal wall in one case. In general, the ability of the FTRD to achieve real full-thickness resection in the lower rectum may be limited because of fixation of the rectal wall in the perirectal tissue. However, it can be used to achieve a deep rectal resection, which may be sufficient depending on indication. Compared with transanal endoscopic microsurgery, the advantage of the FTRD is that it can be used to target lesions in the entire colon, as shown in the current cohort. One drawback of the device is that its long cap limits endoscopic view and flexibility of the endoscope tip. In some cases, this may hamper the advance of the endoscope through difficult anatomic lesions such as the sigmoid or colonic flexures. Although a balloon had to be used in the current study to achieve sigmoid passage in two patients, 24 out of 25 target lesions were reached successfully. These included 10 lesions in the right-sided colon, which demonstrates the applicability of the device in all colonic locations.

This study exclusively reports on resections in the lower GI tract. Application of the FTRD for gastric full-thickness resection may not be possible as a result of the thickness of the gastric wall. Moreover, in our experience, the outer diameter of the device (21 mm) compromises successful transoral insertion. Consequently, the device is currently only approved for application in the lower GI tract.

Another limitation of the device is that the lateral margins of the lesion are not easily visible circumferentially during retraction of the lesion into the cap. To avoid this, it is crucial to grasp the lesion at its center in order to ensure that the whole circumference is incorporated into the cap. Moreover, thorough bowel preparation is crucial in order to achieve good visibility of the lesion. This, together with the fact that the lesion may not have been retracted far enough into the cap, may have accounted for the macroscopically incomplete resections in the current study. In general, the main factor determining resection success is the ability to pull the lesion completely into the cap. This strongly depends on thickness and rigidity of the colonic wall, which is determined by the degree of fibrosis and the presence of inflammation. However, the degree of fibrosis cannot be assessed precisely before resection, and it is usually quite obvious during the procedure if the lesion cannot be completely incorporated into the cap. In such cases, it may be better to stop the FTRD procedure and to consider an alternative (possibly surgical) therapy.

Once the OTSC is deployed, it may hamper further follow-up and re-treatment in cases of incomplete resection. However, combination use with a novel endoscopic cutting device to remove the clip [23, 24] may facilitate repeat procedures and further endoscopic treatment. To allow sufficient healing of the colonic wall defect, in our experience the clip should not be removed before 8 weeks after EFTR. In cases of remnant or recurrent adenoma after clip removal, EFTR with the FTRD can again be applied if there is not too much scarring.

Although not observed in the current patient cohort, a potential risk of the EFTR procedure may be accidental clipping of extraluminal structures (e.g. vessels or small bowel). To avoid unintended incorporation of organs next to the colonic wall, it is crucial to exclusively use traction with the forceps or the tissue anchor to pull the target lesion into the cap. Suction should be avoided completely or, if really necessary, should be used only very gently.

In the current study, five patients with adenomas at the appendix were included. All resections involved the complete appendiceal orifice. As the snare resection is performed “above” the OTSC, opening of the appendix into the abdominal cavity may not be a major concern. However, clipping of the orifice may, at least theoretically, lead to complications such as appendicitis or development of a mucocele. Apart from two patients who developed postpolypectomy syndrome, which was successfully treated with antibiotics, no severe complications were observed. However, due to the very limited experience at this early stage of clinical use, resections at this special anatomic location may not be considered as a standard procedure. We would strongly recommend that such patients are treated exclusively within clinical studies and only after thorough discussion of alternative surgical resection with the patient.

In conclusion, the novel over-the-scope device is a valuable and powerful tool for endoscopic full-thickness resection. It can be used for a variety of diagnostic and therapeutic indications in
the lower GI tract. Future studies are needed to further investigate clinical use and applicability of the device.

Competing interests: The Department of Gastroenterology and Oncology has received financial support from Ovesco Endoscopy for the coordination and performance of a multicenter trial investigating treatment of recurrent peptic ulcer bleeding using overt-the-scope clips. Prof. Caca and Dr. Schmidt have received lecture fees from Ovesco Endoscopy for FTRD training courses.

Acknowledgment

We thank Ovesco Endoscopy for kindly providing the resection device and for the excellent technical support. We also thank our endoscopy nurse team for assistance during the procedures.

References