Effects of Respiratory Therapy (bagging) on Respiratory Function, Swallowing Frequency and Vigilance in Tracheotomized Patients in Early Neurorehabilitation

Ziel: Bei tracheotomierten Patienten sind die mucociliäre Clearance und die Möglichkeiten zur aktiven Sekretexpektoration eingeschränkt. Wir untersuchten Effekte einer spezifischen atemtherapeutischen Methode (Bagging) für tracheotomisierte Patienten auf respiratorische Funktionsparameter (PCO₂, PO₂, SPO₂, Atemfrequenz, bronchiale Sekretqualität), die Schluckfrequenz und die Vigilanz. Methoden: Die Bagging-Methode unterstützt die Mobilisation und Expektoration von Bronchialsekret durch Anwendung von manueller Hyperinflation und nachfolgender thorakaler Hustenunterstützung. In einer Multi-Baseline-Studie mit Follow-up-Messung erhielten 30 tracheotomisierte neurologische Patienten über einen Zeitraum von 3 Wochen täglich eine Bagging Anwendung. Ergebnisse: In fast allen Parametern zeigten sich nach der Intervention signifikante Verbesserungen: PO₂ (p < .01), SpO₂ (p < .01), Atemfrequenz (p < .01), Schluckfrequenz (p < .01) und Vigilanz (p < .01). Die Viskosität des Bronchialsekrets veränderte sich bei allen Patienten positiv. Alle Therapieeffekte waren zur Follow-up-Messung stabil. Schlussfolgerung: Diese ersten Daten zeigen positive Effekte einer spezifischen Atemtherapie für tracheotomisierte neurologische Patienten auf Atemfunktion und weitere Funktionsbereiche. Durch diese kostengünstige und leicht zu erlernende Methode kann das Spektrum atemtherapeutischer Behandlungsmöglichkeiten für tracheotomisierte Patienten effektiv ergänzt werden.

The German abstract will be published in the conference proceedings of the 8th Annual Meeting of the Patholinguistic Society (Deutsche interdisziplinäre Gesellschaft für Dysphagie), Hamburg, Germany, April 3rd–5th 2014 and at the 8th Annual Meeting of the Patholinguistic Society (8. Herbsttreffen des Verbandes für Patholinguistik) (Spektrum Patholinguistik 8, in press). The study was supported by a grant by the “Stiftung für Forschung und Evaluation in der Physiotherapie des Deutschen Verbandes für Physiotherapie (ZVK)” (Foundation to support research and evaluation in physiotherapy).
Introduction

Clinical management of patients with tracheotomies and cuffed tracheotomy tubes presents a particular challenge in early neurorehabilitation. These patients often suffer from reduced mucociliary and tussive clearance of the bronchial system due to the transstomatal airway. Ineffective coughing and an insufficient peak cough flow have been described as the main reasons for mucus retention in neurological and neuromuscular patients [1]. As a consequence, bronchial secretions remain in the alveoli, leading to an increase in secretion viscosity and atelectasis, an aggravated risk of bronchopulmonary infections and a limited respiratory surface area [2,3].

Conventional chest physiotherapy methods to support bronchial secretion clearance have shown that active forced inspiration and expiration techniques are most effective in supporting the removal of excessive bronchial secretions [4–7]. Manual cough assist techniques have been recommended for patients with neuromuscular diseases [8] and positive effects regarding an increase in peak cough flow have been shown, especially in combination with inspiratory assist techniques [4,9,10].

Tracheotomized patients in early neurorehabilitation, however, are often unresponsive and unable to perform methods that involve active forced respiration or coughing. Thus, the range of functional treatment options for improving bronchial clearance is limited in this patient group. Manual hyperinflation techniques, such as ‘bagging’ and ‘air stacking’, can be considered treatment options for these individuals. These techniques have been applied in respiratory medicine and intensive care units for many decades [11–13]. The manual hyperinflation technique of ‘bagging’ involves squeezing a resuscitation bag with a series of larger-than-baseline tidal volumes during inspiration, adding approximately 1 litre of air to the inspiratory volume [13,14]. Previous studies have shown its positive effects on re-recruitment of atelectasis and alveolar ventilation [15], and on mobilisation of pulmonary secretions [16], especially when combined with a physiotherapy regimen of positioning and suctioning [17]. So far, however, the utility and effectiveness of the bagging method has not been investigated in tracheotomized patients in early neurorehabilitation.

In a pilot project, we adapted the bagging method to the needs of tracheotomized neurological patients with limited vigilance and low capacities for active participation. Specifically, a routine manual cough assist technique performed by the therapist was added after every bagging cycle, regardless of the patient’s ability to generate an active cough to support expectoration of mobilized bronchial secretions. In a pilot study after the implementation of the method in a German hospital for early neurorehabilitation, we found a continuous increase in SpO2 measurements in a group of 11 participants during an intervention period of 12 days [18]. Furthermore, the clinical team indicated that swallowing function and vigilance also improved during the modified bagging intervention trial. These incidental findings had not been systematically investigated during the pilot trial, thus, additional effects of this method on respiration-related functions could not be verified.

In previous studies, a close relationship between respiratory and swallowing function has been established [19–22] and positive effects of respiratory interventions on swallowing function have been suggested [22,23]. So far, only studies on the effects of CPAP (continuous positive airway pressure) intervention on swallowing function are available. Some studies report a facilitative effect of CPAP on swallowing, specifically a reduction of saliva aspiration in tracheotomized children [24], a positive regulation of breathing-swallowing coordination during sleep in patients with obstructive sleep apnea syndrome [25] and an increase in swallowing frequency in tracheotomized patients [26]. In contrast, another study found an inhibitory effect of CPAP on swallowing frequency and a reduced latency of swallowing reflex activity in humans [27].

The aim of the present study was to investigate the effects of the bagging method on respiratory function, swallowing frequency and vigilance in tracheotomized patients. Specifically, we addressed the following questions:

1. Does daily application of the bagging method over a period of three weeks lead to improvements in respiratory function (pO2, pCO2, SpO2, respiratory rates) in tracheotomized patients?
2. Can we find additional improvements regarding swallowing frequency, vigilance and the quality of bronchial secretions?

Methods

The study obtained approval by the Ethics Committee of the University of Potsdam, Germany (Proposal No.21/2011, approval 14/31, November 11th, 2011). Written informed consent was obtained from all patients or their legal representatives. All data was collected at the Aatalklinik Wuennenberg, a center for early neurorehabilitation in Bad Wuenenberg, Germany.

Participants

The study was designed to include 30 patients consecutively admitted to a neurorehabilitation center in Germany from December 2011 – November 2012. Patients were included if they had a cuffed tracheotomy tube in situ, a pre-treatment swallowing rate of < 1/min and a history of at least one pneumonic infection post-onset. Patients with emphysema, COPD (chronic obstructive pulmonary disease), recent abdominal or thoracic surgery, vertebral or rib fractures, bone metastases and osteoporosis were excluded from participation.

Study design

The study was conducted in an ABA multiple baseline design with repeated baseline measurements and a follow-up measurement 3 weeks after treatment to confirm stability of patients’ performance and to verify treatment effects. All experimental parameters (Table 1) were obtained in two pre-treatment baseline measurements (A1, A2) on two consecutive days. During the subsequent 3-week intervention period, all patients received a bagging treatment once every workday (a total of 15 interventions). After termination of the treatment interval, baseline measurements were obtained on the two following days (A3, A4) and 3 weeks after the last day of the intervention period (follow-up measurement).

Experimental procedures: bagging interventions

All bagging interventions were performed in upright sitting or lateral positions as the method (particularly the manual cough assistance) can be applied most effectively in these positions. The position chosen for each intervention day was dependent on the current daily fitness of the patient to ensure the optimum comfort. All interventions were performed by a physiotherapist and a respiratory therapist with more than 6 months experience in performing the bagging method with tracheotomized patients.

Frank U et al. Effects of Respiratory Therapy... Pneumologie 2015; 69: 394–399
After providing information to the patient about the procedure, a standard adult single-patient resuscitation bag supplied with an HME-filter (heat moisture exchange filter) was attached to the tracheostomy tube (Fig. 1). The bagging was performed by applying one hand or two-hand squeezes adding approximately 800–1000 ml of air to the active inspiration of the patient. Every patient was bagged according to an individualized bagging scheme (viz. series x insufflations; series = repetitions of one bagging cycle, insufflations = number of insufflations during one bagging cycle) depending on the patient’s abilities and compliance.

All patients received either 3 or 4 series of 10 insufflations (scheme 3 × 10; scheme 4 × 10). In case of spontaneous coughing attempts during the bagging cycle, the bag was immediately detached and the reflexive coughing attempt was supported by a forced manual cough support on the chest by the therapist (Fig. 2). When no spontaneous cough occurred the maximum amount of 10 insufflations was applied, then the bag was detached and the patient was verbally instructed to cough. This voluntary cough was as well supported by forced manual cough support by the therapist. The manual cough support was supplied even if the patient was unresponsive or unable to cough spontaneously or actively, in order to support clearance of the mobilized bronchial secretions.

Data collection

The experimental parameters collected are shown in Table 1 (see [28] for an overview of normal values for parameters 1–4). Blood gases were obtained by capillary blood gas analysis and pulse oximetry. Respiratory rates were counted over 10 minutes in a resting period and analyzed as the mean per minute. Swallowing frequency was determined by visual observation of laryngeal elevations in a 10 minute resting period and as well analyzed as the mean per minute.

Statistical analysis

All data sets were checked for normality of distribution and variance homogeneity. Comparisons involving data sets that did not fulfill the requirements for parametric testing were conducted using the non-parametric Wilcoxon signed rank test. Other comparisons were conducted using a Student’s t-test for paired samples. Significance levels were set at p < 0.05 for the comparison of baselines A1 vs. A2 and A3 vs. A4. Significance levels for the comparison of pre-treatment baseline (combined data sets A1 and

Table 1 Experimental parameters and measurements obtained at two pre-treatment baselines (A1, A2), two post-treatment baselines (A3, A4) and one follow-up baseline three weeks after termination of the treatment period.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PaO2/mmHg capillary blood gas analysis</td>
</tr>
<tr>
<td>2</td>
<td>PaCO2/mmHg capillary blood gas analysis</td>
</tr>
<tr>
<td>3</td>
<td>SPO2% pulse oximetry</td>
</tr>
<tr>
<td>4</td>
<td>respiratory rate/min respiratory cycles counted in 10 minutes</td>
</tr>
<tr>
<td>5</td>
<td>swallowing rate/min swallows (laryngeal elevations) counted in 10 minutes</td>
</tr>
<tr>
<td>6</td>
<td>vigilance Coma Remission Scale [35] (0: worst; 24: best)</td>
</tr>
<tr>
<td>7</td>
<td>quality of bronchial secretions custom-made 5-point rating scale (1: thick; 2: ropey; 3: gel-like; 4: saliva-like; 5: watery)</td>
</tr>
</tbody>
</table>

* Normative values and ranges [28]

[35] This tool assesses alertness, basic motor responses, reactions to acoustic, visual and tactile stimuli, and motor speech responses. The quality of bronchial secretions was assessed with a custom-made 5-point rating scale, as, to our knowledge, no similarly differentiated and validated secretion rating scale is reported in the literature. Secretions were rated according to their viscosity, as being thick (score 1), ropey (score 2), gel-like (score 3), saliva-like (score 4) or watery (score 5). Secretion qualities in the range of score 3 (gel-like) to score 4 (saliva-like) were clinically based interpreted as reflecting a more natural and physiological secretion quality than the other scores. Due to its lack of validation, the secretion score data was analysed descriptively only.
A2) vs. post-treatment baseline (combined data sets A3 and A4) and post-treatment baseline vs. follow-up baseline were adjusted to $p < .025$ (Bonferroni correction).

Results

Participants

The study included 15 male and 15 female tracheotomized patients within an age range of 25 - 84 years ($M = 61$ years, $SD = 16.1$). All patients completed the pre- and post- treatment baseline measurements (A1, A2, A3, A4) and the full intervention period (B). Unfortunately, only 16 patients (53.5%) could be included in the follow-up measurements, as 14 patients (46.6%) were discharged from the hospital earlier than expected. The study population included patients with various neurological diseases: cerebrovascular ischemic stroke ($n = 11$), haemorrhagic stroke ($n = 5$), traumatic brain injury ($n = 4$), hypoxic brain damage ($n = 5$), Parkinson’s Disease ($n = 1$); critical illness polyneuropathy ($n = 1$), intracerebral tumor ($n = 1$), cervical disc herniation ($n = 1$), and myasthenia ($n = 1$). Most patients were early in their rehabilitation process with a mean latency of 57.3 days ($4 - 200$; $SD = 45.8$) between disease onset and first baseline assessment (A1). Some patients received medication with a potential effect on mucus production (Scopolamine, Gabapentin, Baclofen, Bromocriptine, Levodopa, Acetylcysteine [36]). The medication was not changed during the course of the study. All patients were exclusively tube-fed and did not receive any food or drink by mouth.

Pre- and post-treatment baselines: stability of performance on experimental parameters

We found no significant difference in the pre-treatment baseline measurements (A1 vs. A2) ($p > .05$, Wilcoxon, two-tailed), indicating the relative stability of patients’ performance on the research parameters before treatment. Group performance before treatment on all parameters was outside normal ranges, except pCO$_2$, thus treatment effects on pCO$_2$ could not be expected. Also, the post-treatment baselines (A3 vs. A4) were not significantly different, except pCO$_2$ ($t(29) = -2.136, p = 0.041$) and vigilance ($r(29) = -2.504, p = 0.018$). All further analyses were conducted with the combined data sets of the pre-treatment (A1 and A2) and post-treatment (A3 and A4) baseline measurements.

Treatment outcomes

Comparing pre- and post-intervention baselines, we found significant improvements in the following parameters (Fig. 3): pO$_2$ ($U = -5.173, p = 0.090$, $r = 0.39$), SpO$_2$ ($U = -6.716, p = 0.000$, $r = 0.82$), respiratory rates ($U = -6.628, p = 0.000$, $r = 0.68$), swallowing rates ($U = -6.642, p = 0.000$, $r = 0.85$), and vigilance ($U = -6.631, p = 0.000$, $r = 0.66$). The parameter pCO$_2$ did not change significantly; however, it was already in normal range before treatment. All parameters sustained their improvements up to the follow-up baseline, and no further significant changes were observed (pO$_2$: $U = -1.708, p = 0.888$; pCO$_2$: $U = -2.88, p = 0.820$; SpO$_2$: $U = -1.393, p = 0.164$; respiratory rates: $U = -1.289, p = 0.187$; swallowing rates: $U = -1.256, p = 0.209$, vigilance: $U = -5.42, p = 0.588$).

Secretion viscosity changed to a more physiological quality after treatment in all participants (Fig. 4). Before the intervention, 28 patients suffered from thick or ropey secretion quality (scale categories 1 and 2); only 2 patients had gel-like or saliva-like bronchial secretions (scale categories 3 and 4). After the intervention period, 29 patients had gel-like or saliva-like secretions and 1 patient had a liquid secretion quality (scale category 5). This effect was maintained at the follow-up measurement, where still all remaining 16 patients had a gel-like or saliva-like quality of bronchial secretions.

Discussion

Effective respiratory treatment methods for tracheotomized patients in early neurorehabilitation are few, although this clinical population is particularly prone to reduced respiratory function due to the altered transtomatal airway. With a cuffed tracheostomy tube in situ, these patients cannot derive sufficient benefit from conventional physiotherapeutic approaches to support bronchial clearance, such as coughing and active expectoration techniques.
The aim of this study was to investigate whether the ‘bagging-method’, a manual hyperinflation technique that can be performed with tracheotomized and minimally or non-responsive patients, has positive effects on respiratory parameters (pO2, pCO2, SpO2, respiratory rates), swallowing frequency, vigilance and quality of bronchial secretions. After treatment of 30 tracheotomized patients over 3 weeks with a total of 15 individual bagging interventions, we found significant improvements in pO2-, and SpO2-values, respiratory rates, swallowing frequency and vigilance as assessed by a coma remission scale [35]. A total of 13 patients were able to improve their pO2-levels to normal limits and 29 of the 30 patients improved their SpO2-levels during the treatment period to normal ranges, confirming our previous findings during the pilot study [18]. Furthermore, nine patients were within normal respiratory rate limits after the intervention. This seems to indicate that the method led to an improvement in mucociliary clearance and an increase in respiratory surface area, although this assumption would have to be confirmed by radiological assessments. Further evidence for a positive effect of the bagging method on bronchial mucus clearance comes from the descriptive analysis of bronchial secretion quality in the study sample. Whereas the majority of patients suffered from ‘thick’ or ‘ropy’ secretions before the intervention, this quality changed to predominantly gel-like or saliva-like secretion qualities. This finding reflects a change to a more physiological bronchial mucus quality that may have been supported by the hyperinflation and supported coughing technique used in this study. Obviously, patients will be able to manage and clear secretions of this quality much more easily than the more viscous varieties.

Significant improvements were also found regarding swallowing frequency and vigilance, although these functions are not directly related to the focus of the respiratory intervention technique that was applied in the study. Whereas the average swallowing rate before treatment was clearly beyond physiological limits in all patients, this parameter was improved after the intervention for seven individuals. Swallowing frequency alone is not a valid indicator for improved swallowing function and, certainly, these preliminary findings do not justify an assumption of a direct effect of the applied respiratory intervention on swallowing function. However, this result might emphasize the close interaction between respiratory and swallowing function, and indicate that an increase in respiratory effectiveness might facilitate improvements in swallowing function, as suggested in previous publications [22,23]. Another possible interpretation is that the increased swallowing frequency is the result of increased alertness, as a total of 14 participants were able to improve their vigilance scores from pre-treatment to post-treatment baseline by at least 8 points (1/3 of the total score). Five of the individuals who increased their swallowing rates to normal limits were among these patients.

Limitations

The study’s outcome is limited by the following factors: pCO2 measures were within normal ranges before the intervention started; thus, the effects of bagging on this important parameter of respiratory function could not be validated. A further limitation comes from the small sample size that was not determined from a power analysis, but rather based on pragmatic clinical concerns. Fourteen patients left the hospital and were not available for follow-up baseline measurements, so follow-up data could only be collected for 16 patients. This diminishes the validity of any interpretation of treatment effects as being sustainable. Furthermore, the follow-up period was rather short, thus the longer-term effect of the method cannot be predicted based on the results. Our study design did not include a control group or randomized assignment of the participants into treated or non-treated groups. Additionally, the patients were in an early stage of their rehabilitation process and expected to improve with time. To compensate for this limitation, we chose a multiple baseline design with repeated elicitation of experimental data before and after treatment to gain knowledge about the stability of the participants’ performance. However, two consecutive baseline measures may not be enough to ascertain performance stability in a patient group with a very dynamic potential for improvements. Some of the medication involved during the study period might affect mucus production. Thus, a confounding effect on our results cannot be fully excluded. The study’s results should be validated in a randomized controlled trial, including a larger group of patients to confirm the above stated results and interpretations.

Clinical implications

This study presents the first data set showing that respiratory intervention using a manual hyperinflation technique (the bagging method) has positive effects on respiratory function in tracheotomized neurological patients. Participants in our study showed improved oxygenation levels, respiratory rates, bronchial mucus quality, swallowing rates and vigilance scores after a 3-week intervention programme. These findings, together with a clear shift in bronchial secretions towards a more physiological quality, suggest that the method might have the potential to support mucociliary and tussive clearance in this patient group and contribute to improvements in respiratory function and in other respiratory-related functions. In further studies, this respiratory treatment should be implemented into a swallowing rehabilitation programme to investigate whether specific intervention goals such as the regulation of breathing-swallowing coordination or tracheostomy weaning protocols can be supported by respiratory therapy. Although the specific physiological effect mechanisms of
the bagging-method cannot be clarified by this study, this easy-
to-learn and inexpensive method might have the potential to ex-
and the range of treatment options for tracheotomized and se-
verely impaired non-responsive patients.

Conflict of Interest

The authors declare that they have no conflict of interests.

References
1. Hill NS. Neuromuscular disease in respiratory and critical care medi-
cine. Respir Care 2006; 51: 1065–1071
2. Vestbo J, Prescott E, Lange P. Association of chronic mucus hypersecre-
tion with FEV1 decline and chronic obstructive pulmonary disease
morbidty. Copenhagen City Heart Study Group. Am J Respir Crit Care
Med 1996; 153: 1530–1535
3. Prescott E, Lange P, Vestbo J. Chronic mucus hypersecretion in COPD an
death from pulmonary infection. Eur Respir J 1995; 8: 1333–1338
4. Bach JR, Bianchi C, Vidgal-Lopes M et al. Lung inflation by glossophary-
geal breathing and ‘air stacking’ in Duchenne muscular dystrophy.
5. Bateman JR, Newman SP, Daunt KM et al. Is cough as effective as chest
physiotherapy in the removal of excessive tracheobronchial secre-
6. Van der Schans CP, Postma DS, Koeter GH et al. Physiotherapy and bron-
1999; 14: 1418–1424
8. McCool FD, Rosen MJ. Nonpharmacologic airway clearance therapies:
ACCP evidence-based clinical practice guidelines. Chest 2006; 129:
250S–259S
9. Kang SW, Bach JR. Maximum insufflation capacity: vital capacity and
79: 222–227
10. Kang SW, Kang YS, Moon JH et al. Assisted cough and pulmonary com-
2005; 46: 233–238
11. Beck Gj, Barach AL. Value of mechanical aids in the management of a
London: Churchill and Livingstone; 1994
14. Redfern J, Ellis ER, Holmes W. The use of a pressure manometer en-
hances student physiotherapist’s performance during manual hyperinfla-
15. Rotthen HU, Sporre B, Enberg G et al. Re-expansion of atelectasis during
general anaesthesia: a computed tomography study. British Journal of
Anaesthesia 1993; 71: 788–795
16. Jones A, Hutchinson R, Oh T. Effects of bagging on total static compli-
cance of the respiratory system. Physiotherapy 1992; 78: 661–666
17. Hodgson C, Denhey L, Ntoumenopoulos G et al. The acute cardiorespira-
tory effect of manual lung hyperinflation. Is it as safe as we initially
thought? Proceedings from the Australian Physiotherapy Association
5th International Congress 1996
Ansatz für Patienten in der neurologischen Frührehabilitation. Pneu-
monologie 2011; 65: 314–319
dynamics across the adult lifespan. Arch Otalaryngol Head Neck Surg
2005; 131: 762–770
20. Kelly BN, Huckabee M-L, Jones RD et al. The influence of volition on
breathing-swallowing coordination in healthy adults. Behav Neurosci
2007; 6: 1174–1179
21. Eibling D, Gross RD. Subglottic air pressure. A key component of swal-
22. Dicz GrossR, Carraw RL, Svitka WA et al. Deglutitive subglottic air pre-
sure and respiratory system reoii. Dysphagia 2012; 27: 452–459
23. Martin-Harris B. Clinical implications of respiratory-swallowing inter-
actions. Current Opinion in Otalaryngology & Head and Neck Surgery
2008; 16: 194–199
24. Finder JD, Yellon R, Charron M. Successful management of tracheoto-
mized patients with chronic saliva aspiration by use of constant posi-
with OSAHS under CPAP therapy. Acta Oto-Laryngolica 2011; 131:
181–189
26. Frank U, Horn S. Deglutition frequency in neurological patients during
CPAP-supported vs. non-supported spontaneous respiration. Proceed-
ings from 4th Meeting of the UK Swallowing Research Group (UKSRG).
London: 2012
27. Nishina T, Sugimori K, Kolchi A et al. Nasal CPAP inhibits the swallowing
reflex. Am Respir Dis 1989; 140: 1200–1203
28. Oczenski W. Atmten – Atemhilfen. Atemphysiologie und Beatmungs-
medizin. Stuttgart: Thieme; 2006
29. Lear CSC, Flanagan JB, Moorees CFA. The frequency of deglutition in
30. Martin BJW, Nitschke T, Schleicher M et al. The frequency of respiration
and deglutition: influence of posture and oral stimuli. Dysphagia
1994; 9: 75–79
31. Rudney JD, Larson CR. The prediction of saliva swallowing frequency in
humans. From estimates of salivary flow rate and volume of saliva
32. Kapila YV, Dodds WJ, Helm JE et al. Relationship between swallow rate
33. Pehivan M, Yuecayr N, Ertekin C et al. An electronic device measuring
the frequency of spontaneous swallowing: Digital Phagometer. Dys-
phagia 1996; 11: 259–264
34. Lagerloef F, Dawes C. The volume of saliva in the mouth before and after
35. Stepn C, Binder H, Haidinger G. Die Problematik der klinischen Ver-
laufbeurteilung von Patienten mit Apallischem Syndrom (AS) anhand
von Rehabilitationsskalen – ein Überblick. Journal für Neurologie Neu-
rochirurgie und Psychiatrie 2004; 5: 14–22
36. Rote Liste. Arzneimittelverzeichnis fuer Deutschland. Aulendorf: Edi-
tio Cantor Verlag für Medizin und Naturwissenschaften GmbH; 2005