Endoscopic ultrasound (EUS)-guided duodenogastroenterostomy: why not do it from the other side?

A 76-year-old woman, with previous resection of a metastatic mixed adenocarcinoma-neuroendocrine tumor of small-bowel origin presented with gastric outlet obstruction. Abdominal computed tomography revealed a submucosal mass in the third portion of the duodenum, with upstream gastroduodenal dilatation. There was intimate contact between the wall of the fourth duodenal portion and the stomach (Fig. 1).

Retrograde gastroenterostomy was performed as follows, with the patient under general anesthesia. A forward-viewing curved linear endoscopic ultrasound (EUS) scope (TGF-UC180J; Olympus) was advanced distally from the stenosis and proximally to the ligament of Treitz, with the tip of the echoendoscope apposed to the gastric wall under fluoroscopic view. Instillation of water into the stomach via a nasogastric tube aided echo visualization. Direct puncture into the stomach was done with a standard 19-gauge fine-needle aspiration (FNA) needle and a gastrogram was obtained using contrast under fluoroscopic guidance (Fig. 2a). A 0.025-inch guidewire (450 cm, angled-tip VisiGlide; Olympus) was advanced into the stomach and allowed to loop once (Fig. 2b). The echoendoscope was withdrawn and re-introduced to grasp the gastric part of the guidewire, enabling control of both ends of the guidewire.

Endoscopy_UCTN_Code_TTT_1AS_2AG

Fig. 1 In a 76-year-old woman, with previous resection of a metastatic tumor of small-bowel origin and presenting with gastric outlet obstruction, computed tomography showed an 1.8-cm submucosal mass in the third duodenal portion at a transition (TP) that was resulting in upstream gastroduodenal dilatation (D). The fourth duodenal portion was in intimate contact with the stomach (arrow).

Fig. 2 Fluoroscopic imaging shows the echoendoscope advanced distally from the stenosis. a Gastric puncture, using a 19-gauge fine-needle aspiration (FNA) needle, from the duodenum into the stomach with injection of contrast under fluoroscopic guidance. b An 0.025-inch guidewire advanced into the stomach and looped once. Then the echoendoscope was withdrawn and re-introduced to grasp the gastric part of the guidewire, enabling control of both ends of the guidewire.

Fig. 3 Deployment of the guidewire into the stomach under fluoroscopic guidance.

Fig. 4 a Deployment of the guidewire into the stomach under fluoroscopic guidance. b Deployment of the Axios stent into the stomach without cautery or balloon dilation.
Competing interests: Dr. Baron is a consultant and speaker for Boston Scientific and Olympus.

Eduardo Rodrigues-Pinto¹,², Ian S. Grimm², Todd H. Baron²
¹ Gastroenterology Department, Centro Hospitalar São João, Porto, Portugal
² Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, North Carolina, USA

References

Bibliography
DOI http://dx.doi.org/10.1055/s-0034-1393650
Endoscopy 2015; 47: E594–E595
© Georg Thieme Verlag KG
Stuttgart · New York
ISSN 0013-726X

Corresponding author
Todd H. Baron, MD
Division of Gastroenterology and Hepatology
University of North Carolina School of Medicine
101 Manning Drive
Chapel Hill, NC 27514
United States
Fax: +1–984–9740744
todd_baron@med.unc.edu

Fig. 3 The echoendoscope was then reintroduced again over the duodenal part of the guidewire. Fluoroscopy shows the delivery system of the stent advanced into the stomach without cautery or balloon dilation.

Fig. 4 After stent deployment. a Fluoroscopic image: the 15-10 biflanged lumen-apposing stent with both flanges in correct positions. b Endoscopic image: gastric view of the gastroduodenostomy after stent deployment. Both ends of the wire are still in position.