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Xenotransplantation of Porcine Islet Cells as a 
Potential Option for the Treatment of Type 1 Diabetes 
in the Future

the regeneration of islet cell mass and function 
have been proposed [3]. Moreover, beta cell 
replacement therapies have been developed, 
including the transplantation of either the com-
plete pancreas or isolated islets. Restoration of 
the islet cell mass by allogeneic islet transplanta-
tion represents a therapeutic option especially in 
type 1 diabetes patients with a very labile meta-
bolic situation [4, 5]. This technique has been 
successfully established in routine clinical prac-
tice at few specialized centers. Although 
allotransplantation of whole pancreas or islets 
appears to be promising for the treatment of type 
1 diabetes, there are still major limitations, 
mainly resulting from shortage of donor supply 
and the relatively high number of islet cells 
required for a single patient, as well as complica-
tions associated with islet transplantation, such 
as infections [6, 7].

Introduction
▼
Type 1 diabetes and novel therapeutic 
strategies
The prevalence of type 1 diabetes in Western 
Europe and North America is about 0.5 % of the 
population, with an increasing trend, and now 
affecting approximately 2 million subjects [1]. 
Type 1 diabetes pathogenesis involves a complex 
autoimmune reaction leading to complete 
destruction of the insulin-producing beta-cells of 
the pancreas. Consequently, the disease requires 
life-long substitution with insulin [2]. Despite 
insulin therapy, the serious and potentially life-
threatening complications of the disease make it 
imperative to develop a curative therapeutic 
approach for the treatment of type 1 diabetes.
In this context, preventive strategies aiming at 
the protection of islets, for example, by blocking 
inflammation, as well as approaches to induce 
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Abstract
▼
Solid organ and cell transplantation, including 
pancreatic islets constitute the treatment of 
choice for chronic terminal diseases. However, 
the clinical use of allogeneic transplantation is 
limited by the growing shortage of human 
organs. This has prompted us to initiate a unique 
multi-center and multi-team effort to promote 
translational research in xenotransplantation to 
bring xenotransplantation to the clinical setting. 
Supported by the German Research Foundation, 
an interdisciplinary group of surgeons, internal 
medicine doctors, diabetologists, material sci-
ences experts, immunologists, cell biologists, 
virologists, veterinarians, and geneticists have 
established a collaborative research center (CRC) 
focusing on the biology of xenogeneic cell, tissue, 
and organ transplantation. A major strength of 
this consortium is the inclusion of members of 
the regulatory bodies, including the Paul-Ehrlich 

Institute (PEI), infection specialists from the Rob-
ert Koch Institute and PEI, veterinarians from the 
German Primate Center, and representatives of 
influential ethical and religious institutions. A 
major goal of this consortium is to promote islet 
xenotransplantation, based on the extensive 
expertise and experience of the existing clinical 
islet transplantation program. Besides compre-
hensive approaches to understand and prevent 
inflammation-mediated islet xenotransplant 
dysfunction [immediate blood-mediated inflam-
matory reaction (IBMIR)], we also take advantage 
of the availability of and experience with islet 
macroencapsulation, with the goal to improve 
graft survival and function. This consortium har-
bors a unique group of scientists with comple-
mentary expertise under a cohesive program 
aiming at developing new therapeutic approaches 
for islet replacement and solid organ xenotrans-
plantation.
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To combat the disease, autologous stem-cell based therapies, for 
example, by reprogramming differentiated somatic cells into 
pluripotent cells [8] or by controlled differentiation of pluripo-
tent cells [9, 10] have been proposed. This would not only help 
overcome the limited resources of differentiated cells but also 
avoid the potential complications associated with the otherwise 
required immunosuppression for allogeneic transplants. How-
ever, such approaches may bear the risk of the tumorigenic 
potential associated with pluripotent stem cells [11, 12]. There-
fore, stem cell-based attempts may not compensate for the prev-
alent shortage of donor organs in the near future.

Xenotransplantation
As an alternative therapeutic approach, xenogeneic islet trans-
plantation has been experimentally performed in preclinical dia-
betic animal models with promising results. It may therefore 
represent a promising approach to overcome donor organ short-
age [13–17]. First clinical trials have evaluated the efficacy and 
microbiological safety [18–23]. In one trial, live encapsulated por-
cine islet cells were found 9.5 years after transplantation [24].
The unique advantage of xenotransplantation is the potentially 
unlimited availability of donor organs on demand. The ideal 
donor xenotransplant should have a similar size and physiology 
as well as a similar anatomic location compared to the human 
organ. These criteria are largely fulfilled by the pig (Sus scrofa) 
and in addition, this species has a relatively short generation 
time of about 4 months, and is highly fertile. Furthermore, 
genetic engineering is well established in the pig, thus providing 
an opportunity to genetically modify and optimize the donor 
xenotransplant for better matching with the human host. Con-
siderable progress has been made to produce genetically modi-
fied pig organs for nonhuman primate xenotransplantation 
[25–28].
However, the social and ethical acceptance of animals as donors 
of xenotransplants has to be clarified [29, 30]. Additionally, seri-
ous safety concerns have been raised by the possibility of trans-
mitting infectious pathogens from the donor species to the 
human patient, although preventive actions like housing and 
breeding of donor animals under specific pathogen-free (SPF) 
conditions and screening of the donor prior to transplantation 
are expected to minimize infectious risks [31–33]. Wynyard et 
al. [23] reported the case of 14 patients from New Zealand with 
severe unaware hypoglycemia, who were treated with microen-
capsulated porcine islets. Up to 52 post-transplant weeks, no 
transmission of either PERV or other porcine microorganisms 
was detected by sensitive PCR and immunological methods. 
However, in addition to the risk posed by PERV [34], other 
viruses also need to be considered, which are difficult to elimi-
nate even under SPF production of pigs, for example, hepatitis E 
virus and herpes viruses [31]. In order to implement the highest 
possible safety standards, the International Xenotransplantation 
Association (IXA) has established guidelines for xenotransplan-
tation [35, 36].

Strategies to accomplish immunological tolerance of 
pig xenotransplants
Rejection of porcine xenotransplants by the human immune 
system is mediated via a series of humoral and cellular mecha-
nisms. The hyperacute rejection (HAR) results from pre-formed 
antibodies directed against the α1,3-galactosyl-galactose (αGal) 
epitopes on porcine endothelial cells. The generation of immune 
complexes induces a fulminant activation of the host comple-

ment system with rapid disruption of the graft endothelial sys-
tem and irreversible organ damage within a few hours. 
Interestingly, xenotransplantation experiments with grafts from 
genetically engineered pigs lacking functional α1,3-
galactosyltransferase (GGTA1, also termed as α1,3 GT) genes, 
thereby being devoid of the αGal-epitope, have yielded promis-
ing results with regard to enhanced graft survival and function 
in baboons [37–39].
The porcine xenotransplants are challenged by the acute 
humoral xenotransplant rejection (AHXR; also known as acute 
vascular rejection or delayed xenotransplant rejection), which is 
primarily induced by the existence of pre-formed antibodies 
(presumably directed against the porcine endothelial Neu5Gc-
epitope). Strategies to prevent the humoral xenotransplant 
rejection are based on the production of transgenic animals 
lacking the immunologically relevant epitopes or expressing 
human complement regulatory proteins (e. g., CD46, CD55, 
CD59) on endothelial cells [40] or other human immunological 
proteins involved in endothelial activation such as heme oxyge-
nase 1 (HO-1) [41] or tumor necrosis factor induced human pro-
tein A20 [42]. Furthermore, expression of human antithrombotic 
or anticoagulant genes such as tissue factor pathway inhibitor 
(TFPI), endothelial protein C receptor (EPCR) or thrombomodulin 
(TM) may also enhance xenotransplant survival [43].
Since islet preparations usually contain only little or no endothe-
lial cells and vascular structures, cellular graft reactions (CXR) 
play the dominant role in islet xenotransplant rejection. Block-
ing T-cell activation by antigen presenting cells (APC) via inter-
fering with the co-stimulatory systems CD40-CD40L and/or 
CD80/86-CD28 could be utilized to reduce CXR [15, 16, 40, 44, 45]. 
After xenotransplantation under the kidney capsule, transgenic 
porcine islet cell clusters expressing the T cell costimulation 
blocking molecule LEA29Y normalized blood glucose levels of 
diabetic immuno-deficient mice and were, in contrast to wild-
type porcine islets, protected against rejection by human 
immune cells [46]. T cell activation is regulated not only by co-
stimulatory but also by co-inhibitory receptor-ligand interac-
tions. Thus, enhancing inhibitory signals, for example, by 
transgenic expression of respective ligands on porcine cells and 
tissues, is an attractive new concept to diminish human anti-pig 
cellular immune responses [47]. The observation that immune 
responses to pig cells overexpressing the human inhibitory 
ligand PD-L1 (CD274) are particularly weak in vitro and in vivo 
supports the relevance of this approach [48, 49]. Combining 
blockade of co-stimulatory signaling pathways (e. g., by CTLA-4.
Ig/LEA29Y) with an enhancement of inhibitory signals by target-
ing the PD-1/PD-L1 pathway should be highly effective in con-
trolling cell-mediated rejection of xenotransplants. Another 
feasible approach to inhibit T-cell mediated graft rejection 
appears to be the induction of regulatory T-cells (Tregs) [50], 
although the relevance of Tregs in xeno graft rejection requires 
further evaluation [51]. Also, natural killer (NK) cells, mac-
rophages and neutrophils are critical components of the cellular 
response in xenotransplant rejection [52–54]. For example, 
expression of HLA-E, an inhibitor of NK cell activation has been 
found to protect porcine cells from destruction by primate NK 
cells [55]. Other promising targets to protect xenotransplants 
(porcine Islets) from host-directed lysis are associated with the 
so-called immediate blood-mediated inflammatory reaction 
(IBMIR) [56, 57] and the resulting activation of complement fac-
tors and coagulation [57].
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In conclusion, experimental xenograft transplantation from 
genetically modified pigs or pharmacologic modification of HAR, 
AHXR, CXR, and IBMIR appear to be promising strategies to 
improve graft survival.

Macroencapsulation for xenogeneic transplantation
▼
The requirement of chronic immunosuppression to prevent 
graft rejection bearing several risks for the host is a major limita-
tion for beta cell replacement. In order to overcome these obsta-
cles, micro- and macro-encapsulation appear to be reasonable 
strategies to separate the graft from the host immune system 
and prevent rejection [58]. For example, Dufrane et al. [14] 
described the successful xenotransplantation of alginate-encap-
sulated porcine islets into a streptozotocin-induced diabetic ani-
mal model. In this setting, glycemic control could be 
accomplished over several months in animals transplanted with 
encapsulated islets without immunosuppression, while nonen-
capsulated islets were rejected within a week. Furthermore, 
Ludwig et al. [59, 60] developed a subcutaneously implantable 
macrochamber system containing alginate-immobilized islets 
that are protected from the host immune system by a permeable 
Teflon membrane. In addition, this device contains a refillable 
oxygen chamber system to provide the islets with oxygen. This 
system has been optimized and subcutaneous implantation of the 
macro-chamber system containing immobilized rat islets in dia-
betic mini-pigs resulted in persistent glycemic control over 3 
months without immunosuppression, demonstrating a sustained 
xenotransplant function [61, 62]. In addition, this macro-chamber 
system has been successfully used for the transplantation of 
human islets without immunosuppression in a pilot-study con-
ducted in a patient with type-1-diabetes [63].
These data indicate that macroencapsulation of islets may be a 
promising approach to prevent graft rejection in allo- and xeno-
geneic beta cell replacement therapies.

Summary
▼
Many specific hurdles and obstacles related to the field of 
xenotransplantation have been identified and this knowledge 
has paved the way for the development of a variety of encourag-
ing concepts utilizing porcine xenotransplants for beta cell 
replacement. Considering the enormous recent progress in our 
understanding of immunological mechanisms, the transfer of 
genetic engineering techniques into routine practice and the 
advances in material sciences, medical engineering and technol-
ogy, xenotransplantation of pancreas or islets appears to be a 
promising approach for the treatment of type 1 diabetes.
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