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Severe sepsis and septic shock with sepsis-associated multiple
organ failure represent the major causes of infection-associated
mortality and remain the most common cause of death in
intensive care units (ICUs) of developed countries. They account
for 10 to 15% of all ICU admissions and�25% of sepsis cases1; up
to 50 to 75% of severe sepsis cases progress to septic shock.2

Septic shock alone represents 5 to 8% of all ICU admissions.3

Historically, the mortality associated with sepsis and septic
shock has been �50 to 75%.4–6 This decreased after the

development of modern antimicrobial therapies, starting
with penicillin in the early 1940s. Since then sepsis-associated
mortality has fallen to the 30 to 50% range.4,5

Since the development ofmodern antimicrobials, bacterial
pathogens have continuously evolved under their selective
pressure. There has also been a gradual increase in the
incidence of sepsis over the intervening decades.7 Current
estimates suggest a doubling of total cases of severe sepsis in
United States by 2050 (from the actual 800,000 cases per year
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Abstract There has been little improvement in septic shock mortality in the past 70 years, despite
ever more broad-spectrum and potent antimicrobials. In the past, resuscitative
elements have been the primary area of clinical septic shockmanagement and research.
The question of the optimal use of antimicrobial therapy was relatively ignored in recent
decades. This review explores the pathophysiology of sepsis in an attempt to produce a
better understanding and define key determinants of antimicrobial therapy response in
septic shock. Optimizing existing antimicrobials delivery can drive significant improve-
ments in the outcome of sepsis and septic shock. Inappropriate antimicrobial selection
and dosing or delays in the administration substantially increase mortality and
morbidity in life-threatening infections. Definitive combination therapy (where a
pathogen known to be susceptible to a given agent is additionally covered by another
agent) remains controversial. Although some in vitro studies, animal models, and
clinical studies of infection including endocarditis, gram-negative bacteremia, and
neutropenic infections have supported combination therapy, the potential clinical
benefit in other severe infections has been questioned. Several meta-analyses have
failed to demonstrate improvement of outcome with combination therapy in immuno-
competent patients with sepsis and/or gram-negative bacteremia. These meta-analyses
did not undertake subgroup analyses of the septic shock population. This article reviews
the existing evidence supporting combination therapy for severe infections, sepsis, and
septic shock.
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to 1.6 million cases), with a less than proportionate increase
in population of only 33% during the same period.8

Despite major advances in technology and a constant
improvement and refinement of our understanding of sepsis
pathophysiology, numerous clinical trials have failed to pro-
duce any new drugs with consistent beneficial effects on this
patient population.9,10 Part of the reason for the failure to
develop effective novel therapies may be a fundamental
misunderstanding of the pathophysiology of septic shock.11

The Immunologic Model

The currently accepted immunologic paradigm of sepsis
suggests that this disorder is present when the activation
of the systemic inflammatory pathways is triggered by infec-
tion.12,13 The infection initiates an immunologic response
(inflammatory cytokine and eicosanoid/coagulation cascade)
that propagates independently of the underlying infectious
trigger.14,15 This viewof sepsis is reflected in the classic figure
by Bone and colleagues (►Fig. 1).12 The figure indicates that
sepsis is defined by the co-occurrence of infection and
systemic inflammatory response syndrome (SIRS), a syn-
drome that is only indirectly related to the underlying infec-
tion. There is no clear suggestion (in the figure) that
uncontrolled infection drives the development of SIRS.

This model suggests that progression of sepsis occurs as a
consequence of inflammatory cellular signaling and a count-
er-inflammatory (immunoparalytic) response,16,17 despite
the rapid elimination of the pathogen through administration
of cidal antimicrobial therapy14 (►Fig. 2). In this view, sepsis,
severe sepsis, and septic shock are related disorders of
increasing severity, sharing an underlying pathophysiology
involving direct endogenous mediator-driven cellular dys-
function and injury.

Under this model, septic shock is considered to be a
consequence of the underlying cellular injury induced by
the inflammatory mediators rather than by a clinical entity
with different and distinct pathogenesis and pathophysiolo-
gy. If this view of sepsis is wrong or incomplete, this may

explain the reason why immunomodulatory therapies that
were developed based on this model failed to improve out-
comes in clinical trials.18

A key deficiency of this immunologic paradigm of sepsis is
that most pathogens cannot be eliminated quickly from the
patient, despite the use of cidal antimicrobial therapy.19–23

Pathogens likely persist over time, maintaining an inflamma-
tory potential. If immunomodulatory therapies (most of
which are immunosuppressive) are initiated, clearance of
the pathogen burden may even be slowed down despite
use of cidal antimicrobials.

The Classic Paradigm: Microbiologic Primacy

Another view of septic shock derives from the classic model
where the infection is the key driving element of sepsis
(►Fig. 3).11 The septic process starts with a focus of infection,
where the organism replicates, increasing the microbial load
over time. The pathogens release endo- and exotoxins (toxic
burden), which stimulate the production of the endogenous
mediators of the inflammatory cascade. The central aspect of
the microbiologic paradigm is that the microbial load drives

Fig. 1 SIRS, sepsis, severe sepsis, and septic shock. SIRS, systemic
inflammatory response. Adapted with permission from Bone et al.12

See text for explanation.

Fig. 2 Immunologic view of sepsis and septic shock. SIRS, systemic
inflammatory response. Adapted with permission from van der Poll and
van Deventer.14 See text for explanation.

Fig. 3 Microbiologic view of sepsis and septic shock. Reproduced with
permission from Kumar.11 See text for explanation.
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the downstream responses. Thus, the elimination of the
underlying infection should terminate the inflammatory
cascade and limit tissue injury and organ dysfunction. This
model forms the basis of standard antimicrobial therapy in
sepsis and septic shock.

However, this model has a key deficiency in that it fails to
recognize a key element of septic injury progression, the
occurrence of irreversible shock, as originally described by
Wiggers in 1950.24 The concept of irreversible shock suggests
that shock can only be tolerated for a limited time regardless
of the etiology. If the condition driving shock is not directly
addressed within a short period of time, shock will become
irreversible, with inevitable progression to death. This is
directly associated with the idea of the “golden hour,” first
demonstrated in the context of hemorrhagic shock in trauma,
but applicable to other shock states. A corollary of this
concept suggests that mortality will not be improvedwithout
early definitive elimination of the underlying source of he-
modynamic instability (e.g., thrombolysis,25 angioplasty,26 or
definitive repair/control of a bleeding lesion causing hypo-
volemic shock27). With respect to mortality reduction, it is
not sufficient to provide only supportive care.

A Composite Model: Integrating Infection
and Shock

If we consider septic shock under an alternative composite
perspective, the presence of shock becomes the key driver in
the genesis of irreversible organ injury. In this paradigm of
septic shock, the underlying source of shock is the microbial
load. Thus, the faster you reduce the microbial load to a
subcritical threshold, after the onset of persistent or recurrent
hypotension, the higher the survival.

This model construct is similar to the microbial paradigm,
with two additions (►Fig. 4).11 The shock threshold line is the
point at which inflammatory mediator-associated cellular
dysfunction manifests as septic shock (which is highly vari-
able between individuals). Once that point has been passed,
persistent/recurrent hypotension sets the patient on the path
to irreversible organ injury and death.11

The optimal therapy in this paradigm of septic shock is to
rapidly reduce the microbial load to minimize the time that
inflammatory stress is sufficient to sustain shock (►Fig. 5).11

This should limit the risk of reaching the individually inde-
terminate pathophysiologic point at which recovery is no
longer possible.

This composite model has two major pathophysiologic
implications. First, septic shock and sepsis without shock are
different diseases rather than the same syndrome with
differing severity. The evidence for this proposal lay in stark
clinical features (hypotension, lactic acidosis, substantial
exhaustion of compensatory physiologic responses) and
high (>50%) mortality in septic shock, in contrast to the
milder clinical features and lower mortality (�15%) of sepsis
or severe sepsis,28 the different profiles of inflammatory
mediators in these conditions29,30 and evidence of immune
dysfunction in septic shock compared with sepsis without
shock.31

The second major implication is that delays in initiation of
appropriate antimicrobial therapy is associated with a higher
microbial load,32–34 and that organism burden is associated
with increased morbidity and mortality in serious infec-
tions.6,35–41 Hence, early appropriate antimicrobial therapy
with acceleration of the speed of bacterial clearance should be
associated with both improved morbidity and mortality.42

Optimizing Pathogen Clearance

As central corollary of this composite/integrative model of
septic shock is that the key determinant of outcome in septic
shock is accelerated pathogen clearance. ►Table 1 lists the
antimicrobial determinants of pathogen clearance in serious
infections including septic shock.11 Each factor has a potential
impact on speed of pathogen clearance in the clinical context.

This review will focus on antimicrobial optimization prin-
ciples that underlay rapid reduction in the pathogen burden,
particularly combination therapy as it relates to septic shock.
Supplemental antimicrobial therapies (source control), anti-
toxin/immunomodulatory strategies and supportive meas-
ures will not be discussed in this review.

Fig. 4 Composite view of sepsis and septic shock. Reproduced with
permission from Kumar.11 See text for explanation.

Fig. 5 Impact of appropriate antimicrobial therapy in sepsis and septic
shock. Reproduced with permission from Kumar.11 See text for
explanation.

Seminars in Respiratory and Critical Care Medicine Vol. 36 No. 1/2015

Optimizing Antimicrobial Therapy of Sepsis and Septic Shock Vazquez-Grande, Kumar156

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



Early Antimicrobial Therapy
Appropriateness of the initial empiric antimicrobial thera-
py, early administration without delays, and achievement
of therapeutic levels as soon as possible (ideally after the
first dose) are the three pillars of effective antimicrobial
therapy. Application of these three principles will reduce
the microbial burden, decreasing the risk of irreversible
shock and death.

This approach is based on Paul Ehrlich’s famous dictate:
“Frapper fort et frapper vite” (i.e., “hit hard and hit fast”),
stated in the 17th International Congress of Medicine in
1913.43

Appropriate Empiric Antimicrobial Therapy

Although data in sepsis without shock are inconsistent,44–48

empiric antibiotics should cover every reasonably likely
pathogen, as failure to initiate antimicrobial therapy towhich
the pathogen is sensitive is associated with marked increases
in mortality, especially in septic shock.49–55 Inadequate anti-
microbial therapy is started frequently49,56 (15–35%), in-
creasing mortality risk. Recent data suggest that
inappropriate empiric antimicrobial treatment reduces sur-
vival fivefold in serious infections with septic shock.49

To broaden the spectrum of coverage of the empiric
antimicrobial therapy, combination strategies should be
used for the first few days, at least in patients with septic
shock. However, empiric combination therapy must be
adjusted to a narrower regimen in the first 72 hours if
possible, to minimize selection pressure toward resistant
organisms. There are no studies that have suggested that
early narrowing of therapy is detrimental if the organism is
identified or if the patient is responding well clinically. On
the contrary, some studies have pointed to de-escalation of
antimicrobial therapy associated with improved
outcomes.57–60

Antimicrobial Delay

Delay in the initiation of appropriate antimicrobial therapy has a
substantial role in determining mortality in high-risk infections
with a particularly strong association with septic shock.52,61–66

Delays are only inconsistently associated with mortality in
bacteremia/candidemia and sepsis without shock.67–71

One major retrospective analysis of septic shock suggested
that the delay in initial administration of effective antimicrobial
therapy is the single strongest predictor of survival.72 Every hour
of delay in appropriate antimicrobial administration, in the first
6 hours after hypotension is documented, decreases survival by
7.6%. Despite this findings, the median time to deliver appropri-
ate antimicrobial therapy in septic shock was 6 hours (although
these data are now several years outdated) (►Fig. 6).72

Additional retrospective studies of human bacteremia,
candidemia, septic shock, community-acquired pneumonia,
hospital-acquired pneumonia, surgical infections, and men-
ingitis with sepsis have confirmed that the mortality in these
septic conditions is increased with significant delays in
antimicrobial administration.52,63,64,66,73–76 The impact on
outcome of speed of appropriate empiric antimicrobial ad-
ministration in relationshipwith other therapies such as fluid
resuscitation suggests that greater remediable deficiencies
(and greater potential for improvement in care) may lie with
the appropriate early antibiotic administration.72,77,78

In viewof these data, intravenous administration of broad-
spectrum antimicrobials should be initiated as rapidly as
possible in response to clinical suspicion of infection in the
presence of persistent hypotension. Obtaining laboratory test
or cultures should never delay antimicrobial therapy.

Loading Doses

Early appropriate antimicrobial therapy is the central ele-
ment in management of septic shock, but clearance of

Table 1 Antimicrobial determinants of pathogen clearance in
septic shock

1. Early antimicrobial therapy

a. Initiate microbially appropriate therapy

b. Ensure maximally rapid initiation (avoid delays)

c. Utilize a loading dose when possible

2. Antimicrobial potency

a. Ensure antimicrobial cidality

b. Optimize pharmacokinetic indices

i. Time-dependent agents

ii. Concentration-dependent agents

c. Utilize combination therapy with antimicrobials
possessing different mechanisms of action

3. Supplemental therapies

a. Source control

Source: Reproduced with permission from Kumar.11

Fig. 6 Cumulative effective antimicrobial initiation following onset of
septic shock–associated hypotension and associated survival. The x-
axis represents time (hour) following first documentation of septic
shock–associated hypotension. Black bars represent the fraction of
patients surviving to hospital discharge for effective therapy initiated
within the given time interval. The gray bars represent the cumulative
fraction of patients having received effective antimicrobials at any
given time point. Reproduced with permission from Kumar et al.72

Seminars in Respiratory and Critical Care Medicine Vol. 36 No. 1/2015

Optimizing Antimicrobial Therapy of Sepsis and Septic Shock Vazquez-Grande, Kumar 157

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



pathogens will not begin until therapeutic levels of the
antimicrobials in the circulation are achieved.

The markedly increased volume of distribution that many
antimicrobials exhibit (i.e., β-lactams, aminoglycosides, van-
comycin, teicoplanin, and colistin) can result in failure to
achieve therapeutic levels initially with standard dosing
approaches.79–82 An emerging body of literature suggests
that loading doses of some antimicrobials can potentially
yield improved clinical outcomes.79,80,83

Potency of Antimicrobial Therapy
According to Ehrlich’s dictate on optimizing therapy of seri-
ous infections, the first principle was to “hit it hard.” This
principle has many implications in regard to antimicrobial
strategy. It suggests that highly potent antimicrobial regi-
mens that provide the most rapid clearance of pathogens are
preferred (►Fig. 7).11 It also suggests that pharmacokinetic
optimization of antimicrobial dosing is a requirement for
ideal therapy. Further to the extent that combination therapy
has been shown to accelerate pathogen clearance in some
models of infection,84 this principle implies that improved
survival should result. In the case of septic shock, more rapid
pathogen clearance is expected to lead to less release of
endogenous mediators, more rapid resolution of hemody-
namic instability, and improved survival.

Cidal versus Static Therapy

Although cidal therapy, by definition, should provide more
rapid clearance of pathogens, clinical studies generally sug-
gest a lack of clinical superiority over static therapy in most
infections.85,86 There are a paucity of data in this issue
regarding septic shock. The best known study that has
addressed the issue of the importance of cidality in life-
threatening infections is the classic study of bacterial menin-
gitis by Lepper and colleagues in 1951.87 This study showed
inferior outcomes with chlortetracycline which is bacterio-
static compared with penicillin, a cidal drug. In recent years,
few studies have compared the efficacy of well-established

cidal versus static agents in serious infections that may be
associated with sepsis and septic shock.

One randomized controlled study of anidulafungin, a cidal
antifungal echinocandin, demonstrated superiority over flu-
conazole, a static triazole, in invasive candida infections.22

Other studies showed that higher cidal activity of antibiotic
regimens are associated with better clinical cure rates in
bacterial endocarditis,88,89 osteomyelitis,90 and in neutrope-
nic gram-negative bacteremia.91

Although nominally a cidal agent, vancomycin has rela-
tively weak bacterial killing activity relative to antistaphylo-
coccal penicillins for methicillin-sensitive S. aureus (MSSA) in
time kill studies.92 Accordingly, retrospective studies have
shown that vancomycin yields inferior clinical responses and/
or survival than anti-staphylococcal β-lactams in patients
with MSSA bacteremic infections including pneumonia.92–94

Notably, the bacteriostatic agents, quinupristin/dalfopristin
(a streptogramin) and linezolid (an oxazolidinone), appear to
be nomore effective than vancomycin for therapyof serious S.
aureus infections.95,96 The cidal lipopeptide, daptomycin, in
contrast, tends to be superior to vancomycin and comparable
to β-lactams in the treatment of bacteremic S. aureus
infections.97

Overall, the available evidence supports the potential
superiority of cidal therapy in life-threatening infections.
However, additional studies will be required to definitively
address this question in septic shock where the difference
should be most profound.

Pharmacokinetic Optimization

A substantial body of literature suggests that optimization of
dosing strategies can improve pathogen clearance and clinical
responses in infection. However, to date, data on the impact of
pharmacokinetic (PK) optimization on mortality in serious
infections, particularly septic shock, remain sparse.

Time-Dependent Killing Agents
For β-lactam antibiotics, the key PK parameter for optimiza-
tion of pathogen clearance is the fractional time above the
minimal inhibitory concentration (fT > MIC) of the pathogen.
There are relatively few studies that examine the role of
fT > MIC in serious human infections. They suggest that
high fT > MIC (>60–100%) is associated with better bacterial
eradication and clinical cure.98,99

Continuous infusion of certain antibiotics, which gener-
ates 100% fT > MIC for sensitive pathogens, compared with
intermittent administration (i.e., piperacillin-tazobactam,
meropenem, ceftazidime), resulted in improved clinical
cure,100–103 shorter hospitalization, and lower mortality104

in the subset of the most critically ill patients, many of whom
would have had septic shock.

At least two meta-analyses of continuous infusion of β-
lactams in human infection have been published.105,106 Nei-
ther showed an overall beneficial effect of continuous infu-
sion; however, both yielded intriguing insights. Each study
commented on the trend toward greater beneficial effects in
those studies with high baseline mortality risk, an

Fig. 7 Impact of more potent antimicrobial therapy in sepsis and
septic shock. Reproduced with permission from Kumar.11 See text for
explanation.
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observation that is congruent with our underlying hypothesis
that the benefit of PK optimization of dosing strategies on
mortality should exist primarily in septic shock.

As a whole, these data support the use of high-end daily
dosing at short intervals or extended infusions and continuous
infusions where possible. These data also suggest the need for
studies of continuous infusion β-lactam therapy in the highest
risk septic shock patients who are most likely to benefit.

Concentration-Dependent Killing Agents
For fluoroquinolones and aminoglycoside antibiotics, the key
PK parameter for optimization of pathogen clearance is the
area under the curve divided by the MIC of the pathogen
normalized to 24 hours (AUC24/MIC), although peak/maxi-
mumconcentration divided by theMIC (Cmax/MIC) is a closely
related value.107–109

Experimental animal models and human studies suggest
that an AUC24/MIC of >87 to 125 for fluoroquinolones (de-
pending on the individual drug and clinical syndrome) during
the course of therapy yields optimal pathogen clearance and
clinical cure.107–109 Unfortunately, there are no human data
linking fluoroquinolone PK indices to survival or mortality
and no studies of septic shock have yet been reported.
Similarly, peak/MIC ratios of >10 to 12 have been shown to
be associated with improved clinical and microbiologic cure
rates with aminoglycosides.110–112

Vancomycin is another antibiotic whose efficacy is most
closely related to concentration-dependent pharmacokinetic
indices. Retrospective studies of methicillin-resistant S. aure-
us (MRSA) bacteremia and pneumonia reported better mi-
crobiological and clinical outcomes in patients who had
vancomycin AUC24/MIC of 400.113,114 This has been shown
to be independently associated with survival in a retrospec-
tive study of MRSA septic shock.115

Antimicrobial pharmacokinetic indices have been linked
to clinical and microbiologic response in a variety of studies,
but the ones showing an association with survival are more
limited. To the extent that such studies exist, they tend to
showa survival advantage in critically ill patients, particularly
in those with septic shock.

Combination Therapy

There are three major potential advantages of using combi-
nation anti-infective therapy for serious life-threatening in-
fections.116 The most accepted one is that combination
therapy increases the spectrum of coverage, allowing a higher
probability of appropriate initial therapy, reducing mortali-
ty.78,117 This is the primary reason why initial empiric
combination therapy is broadly utilized and specifically
recommended in sepsis and septic shock clinical guidelines.78

Another potential advantage of combination therapy
when comparedwithmonotherapy is reduced risk for emerg-
ing of resistance during therapy.118–120 Similarly, potential
additive or synergistic effect118,119 leading to more rapid
pathogen clearance84,119,121,122 may translate into improved
patient outcome and may be the most directly clinically
relevant advantage of combination therapy.

Antimicrobial synergy, with increased bacterial clearance,
has been best established for β-lactam/aminoglycoside combi-
nations.123 It has also been described in β-lactam/fluoroquin-
olone combinations,124,125 and there are some data that
suggest additive effects or even synergism forβ-lactam/macro-
lides combination.126 There are also potential disadvantages
related to combination therapy, such as increased risk for
toxicity, higher costs, possible antagonism between specific
drug combinations, and selection of resistant strains.127

Despite efforts to address the issue of whether two anti-
microbials improve outcome in sepsis and septic shock
comparedwith a single agent, the results of published clinical
studies and meta-analyses on combination therapy for gram-
negative bacteremia and/or sepsis are contradictory. The
question has not been definitively answered.

In the meta-analysis of gram-negative bacteremia per-
formed by Safdar and colleagues in 2004,128 an overall mor-
tality benefit with combination therapy (odds ratio [OR], 0.96;
95% confidence interval [CI], 0.7–1.32) was not found in the
overall dataset. Several subgroup analyses were also per-
formed to determine whether the findings would differ if
trials were separated according to date of publication (i.e.,
before or after 1990, when more potent antimicrobials were
made available) or study design (i.e., retrospective vs. prospec-
tive). Regardless of subset analyses, there remained no added
benefit to combination therapy except in an analysis restricted
to the five studies of Pseudomonas aeruginosa bacteremia. In
that group, the summary OR was 0.5 (95% CI, 0.32–0.79;
p ¼ 0.007), suggesting a 50% relative reduction in mortality
with the use of combination therapy. The authors noted,
however, that the underlying populations in these studies
varied considerably, and a sizeable proportion of patients
were immune-compromised, making it difficult to apply the
results to the general population.

The systematic review of randomized controlled trials
performed by Marcus et al in 2011 also failed to demonstrate
a benefit of combination therapy with β-lactam/aminoglyco-
side in a wide variety of infections.129 The meta-analysis
performed by Paul and colleagues in 2004130 and the two
Cochrane reviews performed by the same group in 2006131

and 2014,132 have also failed to demonstrate evidence of
improvement of outcomewith combination therapy in immu-
nocompetent patients with sepsis. Further, the addition of an
aminoglycoside to a broad-spectrum β-lactam did not only fail
to reduce the overall mortality in patients with gram-negative
sepsis but was also associated with an increased risk for
adverse events.132 Similarly, in 2003, the same group pub-
lished a meta-analysis in neutropenic sepsis that suggested
little incremental benefit of combination therapy of β-lactam
and an aminoglycoside in this setting.133Of note, none of these
studies undertook an analysis in the subgroup of septic shock
patients. Moreover, in the Cochrane review of 2006, a lack of
benefit with combination therapy was more common among
those studies with a structural bias (i.e., comparing a more
potent β-lactam with a weaker β-lactam and a second agent).

Several studies have found that the efficacy of some antimi-
crobial therapies can be restricted to severely ill patients at high
risk of death, particularly in severe pneumococcal pneumonia/
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bacteremia134–136 and gram-negative bacteremia.137,138 In the
study by Rodríguez and colleagues in 2007, a secondary analysis
of a prospective observational cohort of community-acquired
pneumonia who developed shock, concluded that combination
therapy was associated with a significantly higher survival.136

Korvic et al and Hilf et al found similar results in gram-negative
bacteremia with shock.137,138 These data suggest the possibility
that thebenefit in outcomeofcombination therapy in sepsismay
only exist in severely ill patients, particularly those with septic
shock.

The conflicting results addressing the question of the
usefulness of combination therapy in sepsis might be ex-
plained by the heterogenic nature of the different studies,
structural bias, and variations between patient character-
istics, severity of infections, infection sites, causative bacteria,
and antibiotic treatment. Many of these studies were obser-
vational (where selection bias and confounding by indication
are difficult to avoid, especially with the use of relatively
subjective criteria such as clinical response, rather than
mortality). Another difficulty is that most randomized stud-
ies are designed to assess noninferiority (which means they
have a structural bias in favor of showing equivalence be-
tween monotherapy and combination therapy). Moreover,
those studies often do not compare the same antibiotic in
monotherapy and in combination with a second agent.
Usually, a more pharmcodynamically potent agent in mono-
therapy is compared to a combination of two weaker agents.
In addition, randomized controlled trials often do not have
sufficient numbers of a particular type of microorganism or a
particular patient population (such as septic shock, a popula-
tion that is often excluded) to allow robust subgroup analyses.
Thus, synergy is difficult to rigorously assess in many indi-
vidual studies.

Based on the possibility that any benefit in survival with
combination therapy may be restricted to only the most
critically ill subset of patients, we tested this hypothesis
performing a stratified meta-analysis/meta-regression of 60
sepsis datasets (derived from 48 individual studies).139 The
quality of the study was enhanced by splitting data from 12
studies into mutually exclusive groups of septic shock/criti-
cally ill and non–septic shock/non–critically ill and by ex-
cluding studies where a structural bias would favor an
equivalence outcome (i.e., a highly potent β-lactam vs. a
less potent β-lactam and a second agent). Studies of neutro-
penic sepsis were also excluded. Notably, the pathogen was
required to be sensitive to both agents in the combination
therapy group.

Although we found the same absence of significant benefit
of combination therapy overall, stratification of the datasets
by baseline (monotherapy) mortality risk showed a consis-
tent substantial benefit in terms of clinical cure and survival
with combination therapy in the most severely ill subset of
patients (monotherapy risk of death >25%; OR, 0.51; 95% CI,
0.41–0.64; I2 ¼ 8.6%) (►Fig. 8139,140). Of the 24 datasets
derived from 12 studies that could be stratified by the
presence of shock or critical illness, the septic shock/critically
ill group demonstrated consistently better outcomes with
combination therapy (OR, 0.49; 95% CI, 0.35–0.70;

p < 0.0001; I2 ¼ 0%) (►Fig. 9139). This meta-regression indi-
cated that the benefit found with combination therapy was
only dependent on the risk of death in the monotherapy
group (i.e., the severity of illness). This finding held when
datasets were restricted to randomized controlled trials.
These results also held in subgroups stratified by a variety
of factors including organism, organism grouping (gram
positive or negative), clinical syndrome, and supplemental
antibiotic agent.

This study was followed by a large retrospective propensi-
ty-matched multicenter cohort study by our group,53 evalu-
ating the therapeutic benefit of early combination therapy
with at least two antibiotics with confirmed activity against
the pathogen isolated in septic shock patients. Significant
beneficial effects were observed in outcome, finding an
improved 28-day survival (444 of 1,223 [36.6%] vs. 355 of
1,223 [29%]; hazard ratio 0.77; 95% CI, 0.67–0.88; p ¼ 0.0002)
(►Fig. 1053). Combination therapy was also associated with
significant reductions in ICU (437 of 1,223 [35.7%] vs. 352 of
1,223 [28.8%]; OR, 0.75; 95% CI, 0.63–0.92; p ¼ 0.0006) and
hospital mortality (584 of 1,223 [47.8%] vs. 457 of 1,223
[37.4%]; OR, 0.69; 95% CI, 0.59–0.81; p < 0.0001). The bene-
ficial impact of combination therapy applied to both gram-
positive and gram-negative infections but was restricted to β-
lactam antibiotics in combination with aminoglycosides,
fluoroquinolones, or macrolides. Notably, the most potent
β-lactams (i.e., carbapenems, anti-pseudomonal third- and
fourth-generation cephalosporins, β-lactamase inhibitor
combinations) failed to demonstrate a benefit in outcome
with combination therapy.53,141 This may be explained by
their high cidality, as it is near maximal for most pathogens
(fT > MIC �100%). In this circumstance, the addition of a
second drug may have little incremental benefit. Several
additional recent retrospective studies show a benefit in
survival of patients in septic shock and related critical con-
ditions with combination therapy using antibiotics with
different mechanisms of action.52,142

Although highly suggestive, these retrospective analyses
cannot be considered definitive. While waiting for appropri-
ately designed randomized controlled trials, combination of
empiric antibiotic therapy for several days with two drugs of
different mechanisms of action is appropriate for patients in
septic shock. Monotherapy is reasonable for patients who are
not critically ill and not at high risk of death.

Conclusion

Anti-infective therapy is the cornerstone of treatment for
critically ill patients with sepsis and septic shock. The choice
of initial empiric antimicrobial therapy is crucial in deter-
mining positive outcomes. The optimal selection of antibi-
otics depends on the local resistance epidemiology as well as
individual risk factors for resistance, including recent antibi-
otic use, hospitalization, and previous colonization or infec-
tion with resistant strains. The speed with which appropriate
antimicrobials are initiated is nowwell recognized as a crucial
element in providing effective care of patients with all life-
threatening infections including septic shock. In addition,
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maximization of cidality through pharmacokinetic optimiza-
tion and combination therapy can be useful.

Several studies have attempted to answer the question of
whether combination therapy improves outcomes in septic

patients when comparedwithmonotherapy. The data reviewed
suggest that the question of whether combination therapy is
beneficial may be outdated. The appropriate question may be
under what circumstances combination therapy is beneficial.

Fig. 9 Subset analysis comparing combination antibiotic therapy with monotherapy for reducing mortality of life-threatening infections
associated with sepsis in shock/critically ill and nonshock/noncritically ill patient datasets (derived from 12 studies in which groups could be
separated). Reproduced with permission from Kumar et al.139
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Combination therapy is useful under certain circum-
stances. For example, many experts would support the
use of combination therapy for serious pseudomonal in-
fections and for neutropenic sepsis. In addition, in situa-
tions where there is a significant level of bacterial
multidrug resistance, the use of combination therapy
may be warranted to ensure that likely pathogens are
sensitive to at least one antibiotic.

If our composite model of septic shock with a microbial
load-driven pathogenesis accurately reflects the patho-
physiology of disease progression, only a few days of
combination therapy (to hemodynamic stabilization and
usually to organism identification) is required. Once he-
modynamic stabilization is achieved, the microbial burden
has been reduced to a subcritical threshold that should no
longer leave the patient at risk for irreversible injury.
Pending the publication of appropriate randomized trials,
a strategy of several days of combination therapy for septic
shock cases may be advisable.
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