
Fig. 1 Chemical struc-
ture of demethylsuber-
osin.
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Abstract
!

Demethylsuberosin isolated from the roots of Cudrania tricuspi-
data demonstrated a potent proteasome activator by enhancing
all three chymotrypsin-like, trypsin-like, and caspase-like pro-
teasome activities in a 20S proteasome activity assay. It also at-
tenuated the 1-methyl-4-phenylpyridinium-induced dysfunc-
tion of the chymotrypsin-like and caspase-like activities of pro-
teasome in SH-SY5Y cells with EC50 values of 0.76 µM and
0.82 µM, respectively. Additionally, demethylsuberosin protected
neuronal cells against 1-methyl-4-phenylpyridinium-induced
cell death with an EC50 value of 0.17 µM, while the EC50 value of
betulinic acid was 4.29 µM. We are reporting that demethylsu-
berosin is a potent proteasome activator with a neuroprotective
effect, suggesting a possible candidate for the protection or treat-
ment of neurodegenerative diseases such as Parkinsonʼs disease.
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Cudrania tricuspidata (Carr.) Bureau ex Lavallee, belonging to the
Moraceae family, is a small thorny tree widely distributed in Ko-
rea, Japan, and China, and its neuroprotective [1], anti-inflamma-
tory [2], and antioxidant [3] effects have been reported. Recently
it was reported that xanthones from the root bark [4] and isofla-
vones from the fruit [5] of C. tricuspidata reveleaed neuroprotec-
tive effects against 6-hydroxydopamine (6-OHDA)-induced cell
death in SH-SY5Y cells. Demethylsuberosin, a prenylated couma-
rin, was isolated from the root of C. tricuspidata, and it was re-
ported that demethylsuberosin showed a significant feeding de-
terrence effect against instars of Spodoptera exigua [6] and anti-
inflammatory activity [7]. While many naturally occurring or
synthetic proteasome inhibitors like epoxomicin and carfilzomib
[8,9] have been substantially reported, proteasome activators
have been rarely reported except for betulinic acid. Betulinic acid,
as such, is a naturally occurring compound and it activates the
chymotrypsin-like property of proteasome [10]. Neurodegenera-
tive diseases such as Parkinsonʼs disease are characteristic of the
failure of the ubiquitin proteasome system (UPS) [11]. It was re-
ported that proteasome activator 700 (PA700) and proteasome
activator 28 (PA28), the cellular proteasome activators, showed
decreased activity in the pars compacta of the substantia nigra
in sporadic Parkinsonʼs diseases [12]. 1-Methyl-4-phenylpyridi-
nium (MPP+) is a Parkinsonism-inducing neurotoxin and it causes
specific cell death in dopaminergic neurons. The rapid accumula-
tion of MPP+ in the mitochondrial matrix inhibits mitochondrial
respiratory chain complex I (NADH:ubiquinone oxidoreductase),
resulting in the depletion of adenosine triphosphate (ATP) syn-
thesis [13]. The depletion of ATP synthesis generates reactive
oxygen species (ROS) and inhibits the function of ATP-dependent
UPS, leading to the disruption of the unfolded protein response
(UPR), and finally causes neuronal cell death [14]. We are report-
ing that demethylsuberosin potently activates proteasome and it
has a neuroprotective effect.
Demethylsuberosin (l" Fig. 1) (> 95% purity) was isolated from
the root of C. tricuspidata, and its structure was characterized by
previously reported spectroscopic data [15]. As shown inl" Fig. 2,
demethylsuberosin dose-dependently activated the chymotryp-
sin-like, trypsin-like, and caspase-like proteasome activities in a
20S proteasome activity assay, whereas the control compound,
betulinic acid (> 97% purity, Enzo Life Science), revealed a less po-
tent proteasome activity than demethylsuberosin. As shown in
l" Fig. 3, demethylsuberosin attenuated the MPP+-induced dys-
function of the chymotrypsin-like and caspase-like activities of
proteasome in SH-SY5Y cells (Human neuroblastoma; ATCC No.
CRL-2266) with EC50 values of 0.76 µM and 0.82 µM, respectively,
but not the trypsin-like activity. Betulinic acid revealed a less po-
tent proteasome activity with an EC50 value of 3.56 µM (chymo-
trypsin-like activity) and 3.66 µM (caspase-like activity). As
shown in l" Fig. 4, demethylsuberosin protected neuronal cells
against MPP+-induced cell death with an EC50 value of 0.17 µM,
while the EC50 value of betulinic acid was 4.29 µM.
UPS is critical for the degradation of damaged and aberrant pro-
teins, and the accumulation of ubiquitinated proteins is a hall-
mark of many neurodegenerative diseases, such as Parkinsonʼs
disease. Recent studies suggest that proteasomal impairment
plays an important role in these diseases [14,16]. In dopaminer-
gic neurons, the rapid accumulation of MPP+ occurs in the mito-
chondrial matrix and it inhibits NADH dehydrogenase, resulting
in the depletion of ATP synthesis and decreasing the function of
ATP-dependent UPS [17]. It was reported that MPP+ upregulates
and aggregates α-synuclein by dysfunction of the UPS and, fi-
nally, causes neuronal cell death [18]. It was also reported that
an antioxidant, a keto-cartenoid astaxanthin [19], and verbasco-
side [20] protected neuronal cells against MPP+-induced cell
death in SH-SY5Y cells. Based on our data, the neuroprotective ef-
fect of demethylsuberosin is partly due to the activation of pro-
teasome, even though further research is needed in relation to
the neuroprotective effect of demethylsuberosin and the UPS.

Materials and Methods
!

The root bark of C. tricuspidatawas collected by the Korea Forest
Research Institute, Southern Forest Research Center, Jinju, Korea,
in September 2008 and authenticated by Dr. Hak Ju Lee (Korea
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Fig. 3 Effects of demethylsuberosin against MPP+-induced dysfunction of
proteasome activities in SH-SY5Y cells. Cells were cultured in 48-well plates
for 24 h and samples were simultaneously treated with MPP+ (2mM) for
48 h. Betulinic acid was used as a control compound. The activity is given as
a percentage of that of the control, and data represent the mean ± SD of
three independent experiments; ##p < 0.005, compared with the control
group; *p < 0.01 and **p < 0.005, compared with the MPP+-induced group,
respectively.

Fig. 2 Effects of demethylsuberosin on proteasome activities. Fluorogenic
peptides used as substrates were Suc-LLVY‑AMC (at 40 µM), Boc-LRR‑AMC
(at 40 µM), and Z‑LLE‑MCA (at 80 µM) for chymotrypsin-like (A), trypsin-like
(B), and caspase-like (C) proteases activities, respectively. Betulinic acid was
used as a control compound. The activity is given as a percentage of that of
the control, and data represent the mean ± SD of three independent ex-
periments; p < 0.01 and **p < 0.005, compared with the control group,
respectively.
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Forest Research Institute, Seoul, Korea). A voucher specimen (ac-
cession number KH1–4–090814) was deposited at the Depart-
ment of Biosystems and Biotechnology, Korea University, Seoul,
Korea.
The dried root bark of C. tricuspidata (13.0 kg) was ground and
extracted with MeOH (48 L, 20 L, and 18 L) at room temperature,
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Fig. 4 Neuroprotective effects of demethylsuberosin against MPP+-in-
duced cell death in SH-SY5Y cells. Cells were cultured in 96-well plates for
24 h and samples were simultaneously treated with MPP+ (2mM) for 48 h.
Betulinic acid was used as a control compound. The cell viability is given as
a percentage of that of the control, and data represent the mean ± SD of
three independent experiments; p < 0.005, compared with the control
group; *p < 0.01 and **p < 0.005, compared with the MPP+-induced group,
respectively.
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and the extracts were concentrated in vacuo at 35°C. The dark
brown residue (702.1 g) was suspended in H2O (4.0 L) and parti-
tioned with n-hexane (4.0 × 5 L) and EtOAc (4.0 × 6 L), sequen-
tially. The EtOAc-soluble fraction (213.0 g) was applied to a silica
gel column (15 × 60 cm, mesh 230–400) using CHCl3/MeOH (1:0
to 1:1, 6 L for each eluent) to afford seven fractions (F1, 6 L; F2,
6 L; F3, 6 L; F4, 12 L; F5, 18 L; F6, 24 L; F7, 18 L). F4 (36.0 g) was
fractionated on a silica gel column (10 × 60 cm, mesh 230–400)
with n-hexane/EtOAc (30 :1 to 0:1, 4 L for each eluent) to give
eight fractions (F4.1, 7 L; F4.2, 3 L; F4.3, 4 L; F4.4, 4 L; F4.5, 3 L;
F4.6, 7 L; F4.8, 9 L). F4.5 (7.2 g) was chromatographed on a silica
gel column (10 × 60 cm, mesh 230–400) using CHCl3/MeOH (1:0
to 5:1, 2 L for each eluent) to afford seven fractions (F4.5.1 to
F4.5.7, each 2 L), and F4.5.2 (4.6 g) was then subjected to a C18 re-
versed-phase silica gel column (6 × 70 cm, 75 µm) with MeOH/
H2O (4:1 to 1:0, 5 L for each eluent) to give 15 fractions
(F4.5.2.1 to F4.5.2.15; each 1 L). F4.5.2.2 (37.1mg) was purified
by preparative HPLC (YMC Pack ODS‑A, 250 × 20mm i.d., 5 µm,
50–85% MeOH in H2O, flow rate 8.0mL/min) to afford demethyl-
suberosin (2.9mg, > 95%).
SH-SY5Y cells in Dulbecoʼs modified Eagleʼs medium (DMEM)
media were cultured in 96-well plates (5 × 104 cells/200 µL/well)
for 24 h, and samples were simultaneously treated with MPP+

(2mM) for 48 h. Cell viability was performed using theMTT assay
by measuring at 540 nm using a microplate reader (SpectraMax
Plus 384, Molecular Devices), as described by Carmichael [21].
The proteolytic activities of the proteasome were measured by
using a 20S proteasome activity kit (APT 280, Millipore), as de-
scribed by the manufacturerʼs instructions. Briefly, 10 µL of test
compounds (final 1% DMSO) were incubated in a provided buffer
(final 100 µL) containing 40 µg of 20S proteasome and a substrate
for 2 h at 37°C. Fluorogenic peptides used as substrates were suc-
cinyl-Leu-Leu-Val-Tyr-7-amido-4-methylcoumarin (Suc-LLVY-
AMC at 40 µM), t-butyloxycarbonyl-Leu-Arg-Arg-7-amido-4-
methylcoumarin (Boc-LRR‑AMC at 40 µM), and benzyloxycar-
bonyl-Leu-Leu-Glu-4-methyl-coumaryl-7-amide (Z‑LLE‑MCA at
80 µM) for chymotrypsin-like, trypsin-like, and caspase-like pro-
teases activities, respectively. Suc-LLVY‑AMC included in the kit
was used and Boc-LRR‑AMC and Z‑LLE‑MCA were purchased
from Enzo Life Sciences. Reaction mixtures containing substrates
and test samples without 20S proteasome were used as blanks,
and proteasome activities were measured by quantification of
relative fluorescent units from the release of the fluorescent-
cleaved products aminomethylcoumarin (AMC) (at 380/460 nm)
or methylcoumarylamide (MCA) (at 380/440 nm) using a micro-
plate reader (SpectraMax Plus 384, Molecular Devices).
Cell-based proteasome activity was determined using MPP
+-treated SH-SY5Y cells, as described by Henrik Lovborg and cow-
orkers [22]. Briefly, cells (1.0 × 105 cells/300 µL/well) were cul-
tured in 48-well plates for 24 h in DMEM media supplemented
with 10% FBS. Samples and MPP+ (2mM) were simultaneously
treated for 48 h in DMEM media supplemented with 5% FBS. The
proteolytic activity of the proteasome was evaluated in cell ly-
sates by using a proteasome activity kit (APT 280; Millipore). In
brief, 40 µg of cell lysatewere incubated for 2 h at 37°C in the pro-
vided buffer with fluorophore-linked peptide substrates. We
used Suc-LLVY‑AMC, Boc-LRR‑AMC, and Z‑LLE‑MCA as the same
substrates. Reaction mixtures without cell lysates were used as
blanks and AMC or MCA fluorescence was measured at excita-
tion/emission wavelengths of 380/460 and 380/440 nm, respec-
tively.
Data obtained are expressed as the mean ± standard deviation
(SD). Statistical significance was determined using GraphPad
Prism (GraphPad Software). The differences among groups were
evaluated by one-way analysis of variance (ANOVA) with Bonfer-
roniʼs multiple comparison method. A p value less than 0.05 was
considered to be statistically significant. All the data were ob-
tained from at least three independent experiments.

Supporting information
Spectroscopic data of demethylsuberosin including an HPLC
chromatogram and microscopy images of the cells are available
as Supporting Information.
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