Effects of *Salvia miltiorrhiza* on CNS Neuronal Injury and Degeneration: A Plausible Complementary Role of Tanshinones and Depsides*

Laura Bonaccini¹, Anastasia Karioti², Maria Camilla Bergonzi¹, Anna Rita Bilia¹

¹ Department of Chemistry University of Florence, Sesto Fiorentino, Florence, Italy
² Department of Pharmacy, Division of Pharmacognosy-Pharmacology, University Campus, Thessaloniki, Greece

Abstract

Salvia miltiorrhiza is a very important herbal drug of traditional Chinese medicine. Bioactive constituents are represented by two main groups of secondary metabolites, the lipophilic diterpenic quinones known as tanshinones and the hydrophilic depsides known as salvianolic acids. *S. miltiorrhiza* extracts and single constituents have been shown to have positive effects in central nervous system neuronal injury and degeneration in several animal models by various biological mechanisms. Both tanshinones and depsides protect against β-amyloid-induced toxicity, but their mechanisms are complementary due to their different structure, the lipophilic tanshinones and the hydrophilic depsides. A number of anti-inflammatory mechanisms is also reported for both tanshinones and depsides. Common mechanisms are the effects on cytokines, inducible nitric oxide synthase, and glial fibrillary acidic protein. In addition, depsides are inhibitors of nitric oxide and cyclooxygenase-2, while tanshinones inhibit hypoxia-inducible factor-1α and nuclear factor kappa β. Both constituents can also modulate the protection of the central nervous system from oxidative stress with different but complementary mechanisms: tanshinones can enhance the activities of superoxide dismutase and glutathione peroxidase, while depsides can decrease reactive oxygen species. Furthermore, neuronal death underlies the symptoms of many human neurological disorders, including Alzheimer’s, Parkinson’s, and Huntington’s diseases, stroke, and amyotrophic lateral sclerosis. Both classes of constituents can enhance the antiapoptotic B-cell leukemia protein-2 family members and decrease the translocation of cytochrome c, and, in addition, depsides decrease caspase-3 and intracellular Ca²⁺. Again, both classes of constituents have an activity on vascular endothelial growth factor but it is opposite, whereas tanshinones are inhibitors of acetylcholinesterase.

Besides the extensive studies reporting on the biological mechanisms of depsides and tanshinones, pharmacokinetics studies are still very limited and not conclusive, especially for brain distribution. Further research is warranted to address the mechanisms of the multitarget actions of *S. miltiorrhiza* constituents and to translate this knowledge into clinical practice.

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AChE</td>
<td>acetylcholinesterase</td>
</tr>
<tr>
<td>AD</td>
<td>Alzheimer’s disease</td>
</tr>
<tr>
<td>APP</td>
<td>amyloid precursor protein</td>
</tr>
<tr>
<td>Akt</td>
<td>protein kinase B</td>
</tr>
<tr>
<td>ABβ</td>
<td>β-amyloid</td>
</tr>
<tr>
<td>Bax</td>
<td>Bcl2-associated X protein</td>
</tr>
<tr>
<td>BBB</td>
<td>blood-brain barrier</td>
</tr>
<tr>
<td>Bcl-2</td>
<td>B-cell leukemia protein</td>
</tr>
<tr>
<td>BDNF</td>
<td>brain-derived neurotrophic factor</td>
</tr>
<tr>
<td>BPRP</td>
<td>brain-pancreas relative protein</td>
</tr>
<tr>
<td>CA1</td>
<td>hippocampal CA1 region</td>
</tr>
<tr>
<td>Cdk5</td>
<td>cyclin-dependent kinase 5</td>
</tr>
<tr>
<td>CMM</td>
<td>Chinese materia medica</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>COX-2</td>
<td>cyclooxygenase-2</td>
</tr>
<tr>
<td>CTS</td>
<td>cryptotanshinone</td>
</tr>
<tr>
<td>DTSI</td>
<td>dihydrotanshinone</td>
</tr>
<tr>
<td>EPO</td>
<td>erythropoietin</td>
</tr>
<tr>
<td>ER</td>
<td>estrogen receptor</td>
</tr>
<tr>
<td>ERK1/2</td>
<td>extracellular signal-regulated kinase 1 and 2</td>
</tr>
<tr>
<td>GFAP</td>
<td>glial fibrillary acidic protein</td>
</tr>
<tr>
<td>GSH-Px</td>
<td>glutathione peroxidase</td>
</tr>
<tr>
<td>GSK-3β</td>
<td>glycogen synthase kinase-3 beta</td>
</tr>
</tbody>
</table>

* Dedicated to Professor Dr. Dr. h.c. mult. Adolf Nahrstedt on the occasion of his 75th birthday.
Introduction

Salvia miltiorrhiza Bunge (Lamiaceae) is a very famous HD of the TCM. It first appeared in the Shennong Bencao Jing (ca. 100 A.D.) among the most important medicinal materials, i.e., cinnabar (mineral) ginseng (herb) and the mushroom ganoderma [1]. The HD consists of the dried rhizomes and roots (Salviae miltiorrhizae Radix et Rhizoma), which have a particularly intense red color according to the epithet miltiorrhiza, which means “red juice extracted from a root”. The herb is a deciduous perennial plant rising up to 30–60 cm high, and is native to China and Japan where it grows at an altitude between 90–1200 m. Leaves are simple or divided, depending on their position on the stem. Flower petals are purple or blue held within a dark purple calyx [2]. The common English names of S. miltiorrhiza are “Chinese sage” or “red sage” [3]. Nevertheless, this plant is also generally known in the Western world with the Pinyin names Danshan (丹参), Chi Shen (參), and Zi Danshen (紫丹參). The name Danshan carries much meaning. Dan is the term used to describe cinnabar which is called Dansha (丹砂) or Zhusha (朱砂), Sha being the sand (depicting the small crystals of the mineral), probably related to the dark red color of S. miltiorrhiza roots, or just because cinnabar is one of the top substances of CMM, therefore expressing the great value of S. miltiorrhiza. Similarly, the word Shen refers to ginseng or Renshen (參), the most important herb of CMM [1].

Salviae miltiorrhizae Radix et Rhizoma has a longstanding use in TCM to treat bleeding disorders (e.g., menstruation bleeding) and blood stasis [4], and only during the 20th Century it became known for its blood-vitalizing properties thanks to a famous physician, Qin Bowei, who recommended this HD for heart pain, reporting its efficacy in a series of cases of angina pectoris [5]. Several studies in the 1980s confirmed the therapeutic potential of this HD in cardiovascular disorders, including stroke [6, 7]. In the successive decades, the number of pharmacological and clinical studies grew rapidly proving not only cardiovascular properties but widespread activities in several pathologies. Many interesting, promising therapeutic applications of S. miltiorrhiza extracts or single constituents have now appeared in the literature and include acute ischemic stroke [8, 9], AD [10–12], osteoporosis [13], atherosclerosis [14], fulminant hepatic failure [15], and malignant gliomas [16]. In virtue of having few side effects, S. miltiorrhiza and its single constituents have been widely and successfully used in clinics in China, Korea, Japan, and other Asian countries for the treatment of heart and cerebrovascular disease, hepatitis, hepatocirrhosis, neuroasthenic insomnia, cancer, chronic renal failure, and dysmenorrhea [1, 2, 4]. The great popularity of this plant has contributed to its increasing use in the United States and in many European countries in the form of various dietary supplements claiming amazing benefits, especially neuroprotection and improved cognition.

This paper aims to review the possible role of Salviae miltiorrhizae Radix et Rhizoma against CNS neuronal injury and degeneration, based on the analysis of in vivo studies and biochemical mechanisms involved in the activity.

Characteristic Constituents of Salviae miltiorrhizae Radix et Rhizoma and Their Content in the Herbal Drug and Preparations

The root of S. miltiorrhiza contains two main groups of secondary metabolites [2], lipophilic diterpenic quinones called tanshinones and hydrophilic depsides, generally known as salvianolic acids. Tanshinones belong to the class of abietane-type norditerpenoids. Tanshinone content of roots and rhizome is about 1%, with TSI, TSIIB, and TSIIE being the highest amounts [2]. The hydrophilic constituents depsides (up to 4–5% dried HD) are derivatives obtained by condensation of caffeic acid units or by combination of caffeic acid plus 3,4-dihydroxyphenyl lactic acid...
in the form of dimers, trimers, and tetramers. Main representatives are SalB and its salts with magnesium and ammonium potassium (magnesium lithospermate and ammonium-potassium lithospermate) and SalA, while LA and RA are generally present in lower amounts. Their structures are reported in Fig. 2. Fingerprint analysis of S. miltiorrhiza from different regions of China has shown that lipophilic and hydrophilic constituents vary depending on the habitat [17, 18].

According to the Pharmacopoeia of the People’s Republic of China [3], both TSIIA and SalB are estimated for quality control of the HD and its preparations. The content of TSIIA in Salviae miltiorrhizae Radix et Rhizome should not be less than 0.20%, while SalB should be not less than 3.0%. A similar content is proposed in a draft monograph of the Pharmaeuropa; the dried HD should contain a minimum of 3.0% SalB and a minimum of 0.12% TSIIA.

Effects of Salvia miltiorrhiza Extracts and Single Constituents on Central Nervous System Neuronal Injury and Degeneration: In Vivo Studies

S. miltiorrhiza extracts and single constituents have been shown to have positive effects in CNS neuronal injury and degeneration in several animal models. Among the models used are cerebral injury, streptozocin-induced diabetes, hyperlipidemia, and an Alzheimer’s model (Aβ peptide injection), while the methods of evaluation of the neurological functions include behavioral tests (Morris water maze, Y maze, and passive avoidance tests), neurological deficits score, and specific histological and biochemical investigations (measurement of the brain water content, infarction size, and apoptotic neurons, BBB disruption, and Ig invasion of brain tissues).

Remarkably, despite decoction as the most common preparation used in TCM, most of the studies on animals are carried out using single constituents (both depsides and tanshinones), rather than the phytocomplex. Hence, protective effects in CNS neuronal injury and degeneration have been evidenced for both hydrophilic

Fig. 1 Chemical structures of the main tanshinones found in S. miltiorrhiza: 1 tanshinone I; 2 tanshinone IIA; 3 tanshinone IIB; 4 dihydrotanshinone I; 5 cryptotanshinone.

Fig. 2 Chemical structures of the main hydrophilic constituents in S. miltiorrhiza: 6 Salvianolic acid B; 7 magnesium lithospermate; 8 ammonium-potassium lithospermate; 9 Salvianolic acid A; 10 lithospermic acid; 11 rosmarinic acid.
and lipophilic constituents. In all studies, cognitive impairment was improved and neurological deficits were reduced, suggesting that both tanshinones and depsides were able, even poorly, to pass the BBB and exert their therapeutic effect.

Tanshinones, being lipophilic constituents, are administered orally [20] or intraperitoneally [21–27]. After 10–20 mg/kg, i.p. injections are effective in reducing infarct size, edema, and cell damage in models of cerebral ischemia. A single paper [20] is related to an Alzheimer’s model of memory impairment, and after the administration of 15 mg/kg/day per os, there is an improvement of spatial learning and memory and a decrease in amyloid plaque. Additionally, a nanoformulation based on pegylated-albumin nanoparticles given intravenously, prolongs circulation time and increases plasma concentration compared with the unformulated TIIA. A biodistribution and brain uptake study confirmed that CBSA-PEG-TIIA-NPs possessed better brain delivery efficacy with a high drug accumulation and a fluorescence quantitative level in the brain. The nanoparticles effectively reduced infarction volume, neurological dysfunctions, neutrophils infiltration, and neuronal apoptosis. Similar models of CNS trauma have been investigated with hydrophilic depsides, which are administered intravenously [28–30] or orally [31–34]. Similar doses were used by i.v. administration or per os [10–60 mg/kg], with all the cases having positive outcomes and, also, lower dosages.

From the above results, the fact that such different compounds having remarkable different structures, sizes, and polarity can act in the same way in CNS neuronal injury and degeneration it is quite extraordinary. Additionally, it is noteworthy that SalB [30, 32–34], a tetramer of caffeic acid, caffeic acid dimer [29], and the smaller analog danshensu (3,4-dihydroxyphenylactic acid) [28, 31] are all effective. Nevertheless, due to the different molecular weights of the constituents, doses of the caffeic acid dimer and danshensu are, respectively, twice and four times that of SalB.

The available literature data are reported in Tables 1 and 2, organized according to the nature of the two classes of constituents, hydrophilic (depsides) and lipophilic ones (tanshinones).

Biochemical Mechanisms of Tanshinones and Depsides in Central Nervous System Neuronal Injury and Degeneration

Effects of tanshinones

A number of very recent studies have shown that tanshinones display a promising protective effect on neuron cells. TSI, TSIIA, and CTS are the most abundant components in S. miltiorrhiza and studies have been principally focused to these constituents.

Tanshinone IIA

Chen and coworkers [37] showed that TSIIA treatment reduced the number of degenerated neurons, significantly (p < 0.05) increased the number of intact neurons, and inhibited cerebral apoptosis determined by TUNEL staining [37]. TSIIA decreased the expression of caspase-3 and caspase-8 and these results were proportional to the dose of TSIIA used [27]. TSIIA reduced the Aβ25–35-induced increase of caspase-3 activity and reduced the cytochrome C translocation into cytosol from mitochondria, protecting it from mitochondrial abnormalities [27]. In addition, TSIIA increased the expression of Bcl-2 in the ischemic cortex in TSIIA-treated ischemia groups and prevented an increase in the Bax/Bcl-2 ratio induced by neuronal damage [38]. Qian and coworkers [39] confirmed the neuroprotective effects of TSIIA on cultured cortical neurons treated with Aβ1–42, which decreased the antiapoptotic protein Bcl-XL and the level of Bcl-XL mRNA expression, while the Bcl-xS proapoptotic protein and mRNA did not exhibit any significant alteration [39].

Shi and coworkers [40] elucidated the neuroprotective effects of TSIIA against Aβ25–35-induced cytotoxicity and detected the association of this protective effect with calpain and the p35/Cdk5 pathway. TSIIA increased the viability of neurons, decreased the expression of phosphorylated tau in neurons induced by Aβ25–35, maintained the normal expression of p35 on peripheral membranes, and decreased p25 expression in the cytoplasm. TanIIA also inhibited the translocation of Cdk5 from the nucleus into the cytoplasm of primary neurons induced by Aβ25–35.

Fan and coworkers [41] demonstrated that TSIIA exerts anti-inflammatory effects by inhibition of inflammation cytokine (IL-1β, IL-6, and TNF-α) expression via the ER-dependent pathway and inhibition of iNOS gene expression and NO production. Proinflammatory cytokines have been implicated in the disruption of the BBB and the invasion of inflammatory cells into the CNS [41]. TSIIA suppressed the expression of proinflammatory cytokines TNF-α and IL-8, upregulated the expression of the anti-inflammatory cytokine IL-10, and increased the TGF-β1 level. In the ischemic brain, TSIIA inhibited the mRNA expressions of GFAP, MMP-9, COX-2, p38MAPK, and JNK, downregulated the protein levels of GFAP, MMP-9, and COX-2, and decreased the phosphorylation of p38MAPK and JNK [35].

Chen and coworkers [42] suggested that neuroprotective effect of TSIIA might occur through the downregulation of macrophage MIF expression in neurons. MIF is a proinflammatory cytokine derived from many cell types. After activation of NF-κB, MIF induces the production of subsequent cytokines. NF-κB plays an important role in neuron survival, as the persistent activation of NF-κB renders neurons vulnerable. TSIIA can inhibit MIF expression, NF-κB activity, and the release of cytokines [42]. Wang and coworkers [22] substantiated the anti-inflammatory properties of TSIIA in cerebral ischemia through the downregulation of HMGBl, the translocation from the nucleus to the cytoplasm of RAGE, TLR4, and NF-κB, and the upregulation claudin-5 expression.

Moreover, exposure of cortical neurons to 30 μM Aβ25–35 caused decreased activities of SOD and GSH-Px as well as increased levels of MDA production, while the pretreatment with TSIIA attenuated the changes in SOD, GSH-Px, and MDA induced by the treatment of Aβ25–35 [24]. Tang and coworkers [25] reported that the mRNA expression levels of Trx-1 and Trx-2 around the ischemia area were significantly increased (p < 0.05) in a brain transient ischemia model created by the blockage of the middle cerebral artery. Trx-1 and Trx-2 expression levels in the TSIIA group were increased when compared with the control groups. TSIIA exerted a protective effect on nerve cells through free-radical resistance.

Furthermore, it is reported that TSIIA has protective effects on the BBB, suppresses the expression of ICAM-1, matrix metalloproteinase-9 (MMP-9), and inhibits the degradation of tight junction ZO-1 and claudin [25].

Through a series of in vitro experiments, Xing and coworkers [43] found that TSIIA can inhibit cell migration and invasion that was associated with the suppression of the VEGF/VEGFR2 pathway and regulation of MMP-2/9 secretion in the vascular endothelial cell by TSIIA [44].

TSIIA significantly (p < 0.05) repressed COX-2 mRNA expression and effectively suppressed tumor growth and angiogenesis of human colorectal cancer via inhibiting the expression level of COX-2 and VEGF [43]. In addition, TSIIA was able to inhibit in vitro Aβ formation and disaggregate preformed Aβ fibrils [45]. Lastly, Zhou and coworkers [46] evidenced a potent inhibition of AChE activities in PC-12 cells in vitro by TSIIA.

The biochemical mechanisms related to TSIIA are summarized in Table 3.

Tanshinone I

Pretreatment with TSI had several effects against cerebral I/R injury in the gerbil hippocampus [48]. It increased the immunoreactivities and protein levels of anti-inflammatory cytokines IL-4 and IL-13, but did not increase the immunoreactivities and protein levels of anti-inflammatory cytokines IL-10 and IL-13 [48]. It increased the immunoreactivities and protein levels of anti-inflammatory cytokines IL-10 and IL-13 [48].

TSIIA, a major component of Tanshinone IIA, can inhibit Aβ aggregation, disaggregate Aβ fibers, and reduce Aβ-induced cell toxicity in vitro [45]. TSI showed a better inhibitory potency compared to TSIIA with a preferential bind to a hydrophobic β-sheet groove formed by the C-terminal residues of Isoleucine31, Methionine35, and Valine39 of the Aβ pentamer [45].

Park and coworkers [21] reported that TSI was the best neuroprotective tanshinone in the hippocampal CA1 region, using GFAP and IB4 immunohistochemistry. IB4 immunoreactivities were reduced only in the TSI-treated ischemia group [21].

Kim and coworkers [49] reported that TSI activated ERK-CREB signalling pathways in normal mice and ameliorated memory impairments induced by a GABA receptor agonist or an NMDA receptor antagonist, accompanied by the inhibition of learning-associated ERK and CREB activation in the mouse hippocampus. Furthermore, TSI significantly (p < 0.05) increased CREB phosphorylation (a memory formation marker) in the hippocampus, which suggests that CREB activation by TSI was mediated via ERK phosphorylation. TSI significantly (p < 0.05) prevented the reductions in the phosphorylation of ERK and CREB induced by diazepam [49].

Tung and coworkers [50] proved that TSI was more effective than TSI in inhibiting the growth of lung cancer cells via suppressing the expression of VEGF, cyclin A, and cyclin B proteins in a dose-dependent manner.

Table 1 In vivo studies of the lipophilic constituents of *S. miltiorrhiza*.

<table>
<thead>
<tr>
<th>Type of constituent/extract</th>
<th>Animals</th>
<th>Model of CNS trauma</th>
<th>Evaluation of CNS parameters</th>
<th>Treatment</th>
<th>Outcome</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptotanshinone & tanshinone I</td>
<td>Male Mongolian gerbils</td>
<td>transient cerebral ischemia</td>
<td>biochemical histological examination</td>
<td>10 mg/kg (i. p.)</td>
<td>less damaged cells and neuronal nuclei the hippocampal region CA1; also gliosis was blocked</td>
<td>[21]</td>
</tr>
<tr>
<td>Cryptotanshinone</td>
<td>APP/PS1 transgenic mice</td>
<td>Alzheimer’s model – memory impairment</td>
<td>Morris water maze</td>
<td>5, 15, and 30 mg/kg/day (os, once a day for 4 months)</td>
<td>improved spatial learning and memory, and decreased amyloid plaque</td>
<td>[20]</td>
</tr>
<tr>
<td>Tanshinone IIA</td>
<td>rats</td>
<td>cerebral ischemia – middle cerebral artery occlusion</td>
<td>biochemical histological and neurological examination</td>
<td>20 mg/mL (i. p.)</td>
<td>reduced neurologic deficit, brain water content, and infarct size; decreased IgG evasion of brain tissues (BBB protection)</td>
<td>[22]</td>
</tr>
<tr>
<td>Tanshinone IIA & tanshinone IIB</td>
<td>mice</td>
<td>cerebral ischemia – middle cerebral artery occlusion</td>
<td>biochemical histological and neurological examination</td>
<td>10 mg/kg (i. p.)</td>
<td>reduced infarct size and brain edema formation</td>
<td>[23]</td>
</tr>
<tr>
<td>Tanshinone IIA</td>
<td>rats</td>
<td>cerebral ischemia – middle cerebral artery occlusion</td>
<td>biochemical histological examination</td>
<td>20 mg/kg (i. p.)</td>
<td>reduced neurological deficit scores, brain water content, and infarct size</td>
<td>[24]</td>
</tr>
<tr>
<td>Tanshinone IIA</td>
<td>rats</td>
<td>cerebral ischemia – middle cerebral artery occlusion</td>
<td>histological biochemical</td>
<td>10, 20 and 30 mg/mL (i. p.)</td>
<td>reduced brain water content and infarct size, protected BBB</td>
<td>[25]</td>
</tr>
<tr>
<td>Tanshinone IIA loaded in PEGylated albumin nanoparticles</td>
<td>rats</td>
<td>cerebral ischemia – middle cerebral artery occlusion</td>
<td>histological biochemical</td>
<td>TIIA nanoparticles, 10 mg/kg (i. v.)</td>
<td>reduced the neurological dysfunctions, infarction volume, neutrophils infiltration and neuronal apoptosis</td>
<td>[26, 35]</td>
</tr>
<tr>
<td>Tanshinone IIA</td>
<td>rats</td>
<td>cerebral ischemia – middle cerebral artery occlusion</td>
<td>histological biochemical</td>
<td>4 and 8 mg/kg (i. p.)</td>
<td>reduced infarct size</td>
<td>[27]</td>
</tr>
<tr>
<td>Tanshinone IIB</td>
<td>rats</td>
<td>cerebral ischemia – middle cerebral artery occlusion</td>
<td>histological</td>
<td>5 and 25 mg/kg (i. p.)</td>
<td>reduced the focal infarct volume, cerebral histological damage, and apoptotic cells</td>
<td>[36]</td>
</tr>
</tbody>
</table>
Finally, Zhou and coworkers [46] reported that TSI also had a potent AChE inhibitory activity, suggesting that the aromatic A ring was essential for such inhibition. The biochemical mechanisms related to TSI are summarized in Table 4.

Cryptotanshinone
CTS modulated the APP metabolism by elevating α-secretase activity and sAPPα release [50]. CTS is able to protect H9c2 cells against apoptosis induced by chronic hypoxia via acting on the mitochondrial apoptosis signalling pathway [52]. CTS can prevent chronic hypoxia by targeting the mitochondrial death pathway via balancing in anti- and proapoptotic proteins in the Bcl-2 family proteins, and by inhibition of mitochondria membrane hyperpolarization, cytochrome c translocation, caspase 3 activity, and inactivation of the HIF-1α protein [53]. The biochemical mechanisms related to CTS are summarized in Table 5.

Effects of depsides
In recent years, much attention has been directed to the water-soluble components that represent the major constituents of S. miltiorrhiza decoction used in traditional medicine. Studies are mainly carried out with the principal constituents SalB, SalA, DDS, and RA.

Salvianolic acid B
In the study of Zhou and coworkers [46], SalB was tested as a blocking agent of Aβ-induced Ca2+ intake in PC-12 cells. This study showed that 15 μM Aβ25-35 caused about 40% additional LDH release from Aβ-treated cells compared with normal cells, and the cotreatment with SalB inhibited the LDH release from Aβ-treated cells.
Lin and coworkers [53] investigated the neuroprotective effects of SalB on the expression of BPRP. Treatment of the PC12 cells with SalB significantly (p < 0.05) reversed the expression of BPRP and cell viability while it decreased ROS production and intracellular calcium.

In a further study [33] of rats pretreated with 10 mg/kg SalB, the number of GFAP and OX-42 positive cells were reduced. Furthermore, subchronic SalB administration decreased iNOS and COX-2 expression. The subchronic SalB administration decreased cholesterol acetyltransferase expression levels by enhancing BDNF protein levels [33].

Tian and coworkers [54] investigated the neuroprotective effects of SalB against 6-hydroxydopamine-induced cell death in human neuroblastoma SH-SY5Y cells. SalB significantly (p < 0.05) reduced the 6-hydroxydopamine-induced generation of ROS and prevented 6-hydroxydopamine-induced increases in intracellular calcium. The data demonstrated that SalB reduced the 6-hydroxydopamine-induced increase of caspase-3 activity, and reduced cytochrome C translocation into cytosol from mitochondria [55].

Chen and coworkers [55] investigated the protective effects of SalB in traumatic brain injury in mice. SalB treatment markedly suppressed the expression of proinflammatory cytokines TNF-α and IL-1β, and enhanced the expression of anti-inflammatory cytokines IL-10 and TGF-β1 after traumatic brain injury. More recently, Jiang and coworkers [11] examined the effects of SalB in a mouse model of cerebral ischemia and reperfusion injury with sodium nitroprusside. Pretreatment with SalB decreased the MDA content and NOS activity, and increased the T-AOC level in the cortical area of I/R. SalB also improved pathological changes of hippocampal CA1 neurons by preventing neuronal loss, increasing Bcl-2 protein expression, inhibiting Bax protein expression, and enhancing the ratio of Bcl-2/IR to Bax-IR.

In the study of Kim and coworkers [32], it was observed that SalB ameliorated the memory impairments induced by scopolamine or the Aβ25–35 peptide. SalB can inhibit GABA-induced Cl− currents in a single hippocampal neuron in a concentration-dependent manner. Therefore, the scopolamine-induced amnesic animal model might be the result of the inhibition of GABA signaling [32].

In addition, SMND-309, a derivative of SalB, increased the survival of neurons and promoted angiogenesis by enhancing EPO and EPOR expression, which subsequently increase CD31 expression via the JAK2/STAT3 and VEGF/Fk-1 pathways [9]. Durairajan and coworkers [56] showed that SalB could inhibit fibril aggregation as well as destabilize preformed Aβ fibril in a dose- and time-dependent manner. SalB might interact with the peptide side chain to inactivate fibril aggregation.

The biochemical mechanisms related to SalB are summarized in Table 6.

Salvianolic acid A
Cao and coworkers [12] proved that SalA (50–100 µM) inhibits Aβ42 self-mediated aggregation and disaggregates Aβ42 aging fibrils in a dose-dependent manner.

Wang and coworkers [57] demonstrated that SalA protects SH-SY5Y cells against MPP+-induced cytotoxicity. SalA ameliorates MPP+-induced ROS production, increases the number of viable cells, inhibits apoptotic pathways, prevents caspase-3 activation, and decreases the number of apoptotic cells. In another study [58], SalA was able to activate Nrf2, inducing HO-1 expression and protecting against oxidative stress in RPE.

Table 7 | Biochemical mechanisms of SalA.

<table>
<thead>
<tr>
<th>Salvianolic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antioxidant mechanisms</td>
</tr>
<tr>
<td>↓ ROS production (Wang X et al., 2005) [57]</td>
</tr>
<tr>
<td>↑ Nrf2 (Zhang H et al., 2014) [59]</td>
</tr>
<tr>
<td>↑ HO-1 expression (Zhang H et al., 2014) [58]</td>
</tr>
<tr>
<td>Antiapoptotic mechanisms</td>
</tr>
<tr>
<td>↓ caspase-3 expression (Wang X et al., 2005) [57]</td>
</tr>
<tr>
<td>Other mechanism</td>
</tr>
<tr>
<td>↓ aggregation and disaggregated Aβ fibrils (Cao YY et al., 2013) [12]</td>
</tr>
</tbody>
</table>

Table 8 | Biochemical mechanisms of DSS.

<table>
<thead>
<tr>
<th>Danshensu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-inflammatory mechanisms</td>
</tr>
<tr>
<td>↓ RAGE, p-p38, COX-2, NF-κB, TNF-α, IL-6, and PGE2 (Wang T et al., 2012) [59]</td>
</tr>
<tr>
<td>Antiapoptotic mechanisms</td>
</tr>
<tr>
<td>↑ ratio Bcl-2/Bax (Guo C et al., 2014) [13]</td>
</tr>
<tr>
<td>↑ p-Akt and p-GSK-3β (Guo C et al., 2014) [13]</td>
</tr>
<tr>
<td>↓ Ca2+ intake (Zhou Y et al., 2011) [46]</td>
</tr>
<tr>
<td>Other mechanisms</td>
</tr>
<tr>
<td>↓ release of LDH (Zhou Y et al., 2011) [46]</td>
</tr>
</tbody>
</table>

Table 9 | Biochemical mechanisms of RA.

<table>
<thead>
<tr>
<th>Rosmarinic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antioxidant mechanisms</td>
</tr>
<tr>
<td>↓ nitration of proteins (Alkam T et al., 2007) [60]</td>
</tr>
<tr>
<td>↓ ROS (Renzulli C et al., 2004) [60]</td>
</tr>
<tr>
<td>↓ lipid peroxidation (Renzulli C et al., 2004) [61]</td>
</tr>
<tr>
<td>Antiapoptotic mechanisms</td>
</tr>
<tr>
<td>↓ tau hyperphosphorylation (Iuvone T et al., 2005) [63]</td>
</tr>
<tr>
<td>↓ p38 MAP kinase pathway (Iuvone T et al., 2005) [63]</td>
</tr>
<tr>
<td>↓ caspase-3 expression (Iuvone T et al., 2005) [63]</td>
</tr>
<tr>
<td>Other mechanisms</td>
</tr>
<tr>
<td>↓ fibril aggregation and destabilize preformed Aβ fibrils (Ono K et al., 2004) [62]</td>
</tr>
</tbody>
</table>

cells by activating the Akt/mammalian target of rapamycin signalling. SalA induced Nrf2 phosphorylation through a mechanism dependent on PI3 K/Akt/mTORC1 activation. The transcription factor Nrf2 plays a vital role in ARE-mediated expression of phase II detoxifying and antioxidant enzymes, as well as in the prevention of cell damage caused by oxidative stress. Akt-dependent mTORC1 signalling might be responsible for Nrf2 activation, as rapamycin blocked SalA-induced Nrf2 phosphorylation and nuclear translation, as well as HO-1 induction [58]. The biochemical mechanisms related to SalA are summarized in Table 7.

Danshensu

DSS blocked the expression of RAGE, p-p38, and COX-2, and NF-κB activation, and inhibited the increase of TNF-α, IL-6, and PGE2 [59]. It is known that AGEs bind to RAGE, transmitting the signal from RAGE to NF-κB-regulated cytokines. DSS did not change the expression of AGEs but blocked the increased expression of RAGE [59]. Therefore, it may reduce not only the production of ROS, but also it could result in the reduction of p38 phosphorylation leading to the decrease of NF-κB activation, in turn, downregulating the inflammatory response in the hippocampus. Sodium DSS amplified the ratio of Bcl-2/Bax and the levels of p-Akt and p-GSK-3β [13]. Phosphorylation of Akt promotes cell survival against cerebral ischemic injury by phosphorylation and subsequent inactivation of many proapoptotic proteins, such as GSK-3β, procaspase-9, and forehead transcription factor (FKHR) [13]. In addition, DSS could protect PC-12 cells from Aβ-induced cytotoxicity by improving cell viability, inhibiting Ca2+ intake, and reducing LDH release [46]. The biochemical mechanisms related to DSS are summarized in Table 8.

Rosmarinic acid

The study of Alkam and coworkers [60] examined the protective effects of RA on memory impairment in a mouse model induced by acute intracranial injection of Aβ25–35. RA prevented Aβ25–35-induced nitration of proteins and impairment of recognition memory [60].

Renzulli and coworkers [61] clarified that RA reduces, in a concentration-dependent manner, Aβ22-induced ROS formation and lipid peroxidation. Interestingly, Ono and coworkers [62] reported that RA inhibited the formation of fibrils from Aβ and destabilized preformed Aβ fibrils in vitro.

Furthermore, Iuvone and coworkers [63] demonstrated that RA is able to inhibit tau hyperphosphorylation, probably through the inhibition of the p38 MAP kinase pathway but not via the inhibition of GSK-3 hyperphosphorylation. RA inhibited caspase-3 activation and DNA fragmentation, thus suggesting that RA could affect the execution phase of Aβ-induced apoptosis [63].

The biochemical mechanisms related to RA are summarized in Table 9.

Complementary Biochemical Mechanisms of Tanshinones and Depsides on Central Nervous System Neuronal Injury and Degeneration

Briefly, the principal established mechanisms for both classes of constituents are summarized in Fig. 3. Both tanshinones and depsides are Aβ inhibitors but their mechanisms are complementary due to their different structure, the lipophilic tanshinones, and the hydrophilic depsides. TSAII and TSI contain an aromatic ring structure similar to other typical organic Aβ inhibitors and it is likely that tanshinones interact with aromatic residues of Aβ to form a π-π stacking arrangement between tanshinone and Aβ. TSAII and TSI have a comparable ability to disassemble the existing Aβ fibrils, although TSI showed a better inhibitory potency to prevent Aβ. Both TSAII and TSI prefer to bind to the C-terminal β-sheet, particularly hydrophobic residues I31, M35, and V39 of the Aβ pentamer. These binding sites interfere with the lateral association of fibrils, particularly hydrophobic residues I31, M35, and V39 of the Aβ pentamer. This complex of depsides-Aβ is energetically more stable [12].
Additionally, considerable data suggest that inflammation contributes to many CNS diseases, and therefore represents a plausible therapeutic target for intervention. A wealth of potential inflammatory targets for intervention have been proposed, including microglial activation and leukocyte extravasation via adhesion molecules or MMPs, NO and iNOS, COX-2, and cytokines such as IL-1 and TNF-α [64].

A number of anti-inflammatory mechanisms have been reported for both tanshinones and depsides, and they can be beneficial in many CNS disorders. Common mechanisms are the effects on cytokines, iNOS, and GFAP. The release of proinflammatory cytokines represents the first stage of acute CNS diseases and many chronic pathologies, such as multiple sclerosis. Increased iNOS expression contributes to many CNS diseases, and inhibitors have been explored as potential targets for intervention, while GFAP is considered an important biomarker for astroglial pathology in neurological diseases providing a background to protein synthesis, assembly, function, and degeneration.

In addition, depsides are inhibitors of NO and COX2. COX exists as two major isozymes: COX-1 is expressed constitutively in many tissues with a role in normal homeostasis, whereas COX-2 is induced in response to inflammatory mediators. Increases in COX-2 activity have been associated with ischemic damage in experimental strokes and COX-2 is induced in areas with evidence of recent demyelination. Consequently, COX-2 inhibitors protect neuronal cells from amyloid toxicity in vitro, and promote neuronal survival in animal models of ischemic and excitotoxic neurodegeneration. COX-2 inhibitors also reduced neuronal damage in the experimental model of Parkinson’s disease.

NO can exert both protective and deleterious actions in ischemic events. Initially, NO produced by endothelial NOS is protective through its vasodilatory action, but subsequently, NO produced via neuronal NOS and iNOS contributes to ischemic damage. Modulation of NO levels has been reported not only in the neurons of the CNS, but also in the glial cells (microglia and astroglia) activated during the neuroinflammatory response. Thus, NO and the pathways triggering its release are emerging as an important research focus in the search for strategies to prevent, halt, or cure neurodegenerative diseases.

By contrast, tanshinones inhibit HIF-α and NF-κB. HIF-α is the alpha subunit of the hypoxia-inducible factor, which is an important transcription factor that regulates cellular metabolism and survival under hypoxic stress. HIFs regulate cellular stress responses in tandem with NF-κB to control hypoxic inflammation through the activation of cytokine and hypoxia pathways. HIF can be activated in response to multiple stimuli, such as bacterial lipopolysaccharides, microtubule disruption, IL-18 and TNF-α, hepatocyte growth factor, and ROS [64].

It is well documented that oxidative stress has been implicated as one of the leading causes for brain damage induced by cerebral I/R. Compared to other tissues in the body, the brain is particularly vulnerable to oxidative damage because of the high oxygen consumption rate and metabolic rate. In addition, the relatively lower antioxidative capacities, such as low to moderate activities of SOD, catalase, and GSH-Px, make the brain a target for free radical attack. There is evidence that GSH plays an important role in the detoxification of ROS in the brain, which is secreted primarily by macrophages. Again, the different mechanisms described for tanshinones and depsides can be complementary in the protection of CNS from oxidative stress [65].

Neuronal death underlies the symptoms of many human neurological disorders, including AD, Parkinson’s, and Huntington’s disease, stroke, and amyotrophic lateral sclerosis. During the initiation phase of apoptosis, the death signal activates an intracellular cascade of events that may involve increases in the levels of oxyradicals and Ca²⁺, production of Par-4, and translocation of proapoptotic Bcl-2 family members (Bax and Bad) to the mitochondrial membrane. Certain caspases (caspase-8, for example) can also act early in the cell death process before, or independently of, mitochondrial changes. The effector phase of apoptosis involves increased mitochondrial Ca²⁺ and oxyradical levels, the formation of permeability transition pores in the mitochondrial membrane, and the release of cytochrome c into the cytosol. Cytochrome c forms a complex with apoptotic protease-activating factor 1 and caspase-9. Activated caspase-9, in turn, activates caspase-3. HIFs regulate cellular stress responses in tandem with NF-κB to control hypoxic inflammation through the activation of cytokine and hypoxia pathways. HIF can be activated in response to multiple stimuli, such as bacterial lipopolysaccharides, microtubule disruption, IL-18 and TNF-α, hepatocyte growth factor, and ROS [64].
and 7 × 10
VEGF reduces excitotoxic damage to cultured hippocampal neur-
noutgrowth and maturation, and neuronal survival. A neuropro-
number of ways. VEGF enhances neuronal proliferation, neurite
endothelial cells, but it also has effects on neurons and glia in a
number of ways. VEGF enhances neuronal proliferation, neurite
outgrowth and maturation, and neuronal survival. A neuropro-
ective role for VEGF is supported by the demonstration that
VEGF reduces excitotoxic damage to cultured hippocampal neu-
ns and reduces damage in vivo after ischemia. Together with
the evidence that VEGF expression increases after ischemia, tra-
atic brain injury, and seizures, it is possible that VEGF is an en-
dogenous neuroprotective agent in the CNS. However, despite the
potential importance of VEGF as a neuroprotective growth factor,
few direct studies of VEGF on neurons or glia have been published
to clarify its actions [67]. Astonishing, VEGF also demonstrated
a remarkable potency in the epileptic brain, as a conse-
quence, VEGF or VEGF-related targets could provide useful end-
points to direct novel therapeutic strategies for epilepsy [67].

Finally, tanshinones are inhibitors of AChE, suggesting possible
important rules in Parkinson’s disease but also beneficial advances
in pharmacotherapy of disorders such as schizophrenia and
AD [68].

The inhibitory activities of tashinones were evaluated using
physostigmine as a standard drug (IC50 was 2.5 × 10−7 M). DTSI
and CTS were the most potent inhibitors (IC50 were 1.0 × 10−6 M and
7 × 10−6 M, respectively). TSI and TSIIA had only weak inhibi-
ey effects.

The structures of DTSI have a much greater activity than TSI,
which differs by only one double bond, as DTSI has a dihydrofuran
ring while TSI has a furan ring. CTS and TSIIA show a similar
difference in activity, so it appears that the dihydrofuran ring is
crucial for AChE inhibitory activity. CTS has a sevenfold higher activity
than DTSI, which suggests that an aromatic A ring may con-
tribute more to inhibitory activity than a hexane A ring. Addi-
tionally, the clopP values of DTSI, CTS, TSI, and TSIIA were calcu-
lated as 2.4, 3.4, 4.8, and 5.8, respectively, which indicates that
these compounds have the potential to penetrate the BBB, but
their lipophilicity is inversely related to the cholinesterase inhibi-
ory activity [46].

These results also support the traditional application of this plant
to alleviate cognitive dysfunction and could serve as an interest-
entemplate for the development of new drugs against AD.

Pharmacokinetics Figures and Biodistribution of
Salvia miltiorrhiza Constituents

Pharmacokinetic and biodistribution studies are very limited,
generally related to single isolated constituents, rarely report bi-
distribution to the brain, and most of them only evaluate the
plasmatic concentration of administered constituents or their
metabolites. Studies related to lipophilic compounds are mainly
concerning formulations developed with the aim to improve
their bioavailability.

A unique trial on humans, a randomized, open-label, single-dose
study, was conducted in 12 healthy Chinese [6 males, 6 females;
mean age 25.2 (3.8 ± SD) years] volunteers receiving a single in-
travenous infusion of a 100- or 200-mg mixture of depside salts
(SalB ca. 88%, RA ca. 4.5%, and LA LSB ca. 1%), a multicomponent
drug marketed in China for the treatment of coronary heart dis-
ease [69]. Peak plasma concentrations of depsides were observed
at 0.3 to 1 h following the 1-h i.v. infusion. Peak plasma concen-
trations of SalB had mean concentrations of 4925 ng/mL at the
100-mg dose and 10 285 ng/mL at the 200-mg dose. Immediately
after Cmax, there was a rapid decline in the plasma concentra-
tions. The mean Cmax values for RA and LA were between 150–
400 ng/mL, according to the different dosages. No significant dif-
ference in pharmacokinetic parameters was observed between
males and females. RA was eliminated more rapidly than
SalB and LA, with the plasma concentration decreasing to less
than the lower limit of quantitation within 3 h of dosing. The
AUC(0–∞) value of LSB was much greater than those of RA and LA,
which is in agreement with the high amount of SalB (ca. 88%).

According to these results, SalB is methylated rapidly in the liver
and most of the metabolites (M1, M2, and M3 detected in the
plasma with very low concentrations between 50 and 170 ng/
ml) are excreted directly into bile and finally into feces. The low
urinary excretion of LSB (0.58%) also indicated that renal secre-
tion is not the main excretion pathway [69].

An interesting study was conducted with the aim to evaluate the
pharmacokinetic interaction between tanshinones and depsides
[70]. Rats were administered i.v. with an emulsion of 10 mg/kg
tanshinone extract (equivalent to 4.0 mg/kg TSIIA), 100 mg/kg
depside extract solution (equivalent to 61.2 mg/kg SalB), or a
mixed extract-loaded emulsion (equivalent to 4.0 mg/kg TSIIA
and 61.2 mg/kg SalB). The AUCs of both TSIIA and SalB were con-
siderably increased (about 2- to 14-fold) after i.v. administration
of the mixed extract-loaded emulsion in comparison with the
equivalent dose of the corresponding extract administration.

The Cmax concentrations of TSIIA and SalB were also both signifi-
cantly increased (p < 0.01). However, no significant differences in
the t1/2 of TSIIA and SalB in the mixed extract-loaded emulsion
groups were found compared with that of the corresponding ex-
tract groups, except for the high dose groups of TSIIA (p < 0.05).

Therefore, a pharmacokinetic interaction occurs between tanshi-
ones and depsides after i.v. administration in rats, which affects
the pharmacokinetic process of TSIIA and SalB in vivo [70].

To the best of our knowledge, only one study estimated the phar-
macokinetics of depsides in the rat blood and brain by microdial-
ysis sampling [71]. A mixture of depsides (DSS 40 mg/kg BW, pro-
tocatechuic aldehyde 149 mg/kg BW, and SalB 50 mg/kg BW)
was administrated intragastrically, and then blood and brain micro-
dialysates were collected at 15- and 30-min time intervals for
4 h, respectively. DSS and protocatechuic acid were detected
in both blood and brain microdialysates, while protocatechuic
aldehyde and SalB were not detected. Brain-to-blood (AUCbrain/
AUBlood) distribution ratios were 0.25 ± 0.04 and 0.09 ± 0.02 for
DSS and protocatechuic acid, respectively [71]. DSS can readily
permeate the BBB after oral administration of the total extract,
and protocatechuic acid is a potential metabolite of protocate-
chuic aldehyde.

Several other studies in animals concerning depsides after oral or
i.v. administration have been reported in the literature. They all
concluded that depsides after oral administration are character-
ized as having rapid oral absorption, quick clearance, and poor
absolute bioavailability; after i.v. administration, they were ex-
tensively metabolized and degraded rapidly.

A study was carried out after the single-dose oral administration
of SalA (5, 10, and 20 mg/kg doses) in beagle dogs. The lack of
dose proportionality over the dose range, with an absolute bioavailability from 1.47% to 1.84% [72], is noteworthy.

Additionally, Hou and coworkers [73] evaluated the plasma concentrations of SalA after a single i.v. administration of 5 mL/kg of an S. miltiorrhiza injection to male Sprague-Dawley rats. The following data were found: t1/2α was 0.139 ± 0.035 h, t1/2β was 1.346 ± 0.307 h, AUC (0–4 h) was 25.142 ± 6.858 mg·h/L, AUC (0–∞) was 38.014 ± 8.219 mg·h/L, CL was 0.105 ± 0.022 L/kg·h, and MRT was 1.145 ± 0.391 h [73].

Another study [74] was carried out with LA in rats. The oral bioavailability was 1.15%, with AUC (0-t) values of 301.89 and 3.46 mg·h/L after i.v. and oral administration, respectively. The total recovery from bile was 75.36% (0.46% for LA, 17.23% for a not described Metabolite 1, and 57.67% for a not described Metabolite 2) after i.v. administration, and 4.26% (0.00% for LA, 0.10% for Metabolite 1, and 4.16% for Metabolite 2) after oral administration [74].

A further study [75] was carried out with magnesium salt of SalB at 3, 6, and 12 mg/kg after i.v. administration in beagle dogs. SalB was distributed and eliminated quickly from the central compartment. The mean t1/2 values at doses of 3, 6, 12 mg/kg were 2.2, 2.7, and 2.9 min, respectively, and the mean t1/2 values were 43, 42, and 42 min, respectively [75].

Additionally, a study with SalB [76] at a dose of 100 mg/kg SalB administered via the femoral vein gave the following blood parameters: t1/2β was 53 ± 15 min, AUC was 1340 ± 167 min µg/mL, Cl was 79 ± 9 mL/kg/min, Cmax was 85.2 ± 12.7 µg/mL, tmax was 30 ± 0 min. For bile, the t1/2β was 9 ± 1 min and the AUC was 2080 ± 278 min µg/mL. The bile-to-blood distribution AUC bile/AUC blood was 1.55 ± 0.21 [76].

Concerning the pharmacokinetic of tashinones, there are several studies available in the literature on single tanshinones showing that CTS was metabolized to a major metabolite, TSIA, and trace amounts of several hydroxyl- and dihydroxyl-CTS derivatives in rats [77–80]. Some showed that TSIA was metabolized to TSIB, and some hydroxylated derivatives, dehydrotanshinone IIA and tanshinaldehyde in rats [77,80,81]. It was also shown that DTSI was metabolized to TSIIA by dehydrogenation, hydroxyl derivatives, and a derivative by D-ring hydrolysis in rats [80].

A study was carried out using a commercial standardized fraction of tashinones (equivalent to 1.15 mg/kg of TSI, 1.10 mg/kg of TSIIA, and 1.91 mg/kg of CTS) to rats. After oral administration of 10 mg/kg, the Cmax, tmax, AUC, and t1/2 were calculated for the different constituents. For TSI, the parameters were 1.63 ± 0.78 ng/mL, 0.42 ± 0.26 h, 3.85 ± 1.65 ng·h/mL, and 3.00 ± 0.32 h, respectively. For DTSI, the values were 3.23 ± 1.40 ng/mL, 0.79 ± 0.19 h, 10.2 ± 3.90 ng·h/mL, and 1.69 ± 0.29 h, respectively. The Cmax, tmax, AUC, and t1/2 of TSIIA were 2.78 ± 0.96 ng/mL, 0.54 ± 0.25 h, 4.53 ± 0.77 ng·h/mL, and 2.07 ± 0.57 h, respectively, while for CTS, they were 0.66 ± 0.27 ng/mL, 0.42 ± 0.20 h, 1.09 ± 0.40 ng·h/mL, and 1.13 ± 0.38 h, respectively [82].

All these studies focused on an improvement of the solubility and dissolution rate of tanshinones. Four studies concerning tanshinones in the form of solid dispersion were carried out. A first investigation [83] evaluated the pharmacokinetic plasma profile of a solid dispersion of TSI in PEG6000 after a single i.v. or oral dose. TSIA after a single i.v. dose of 2 mg/kg exhibited a triexponential pattern consisting of rapid distribution (t1/2α, 0.024 h), slow redistribution (t1/2β, 0.34 h), and a terminal elimination phase (t1/2γ, 7.5 h). TSIA preferentially distributed into the reticuloendothelial system, especially into the liver and lungs, after either i.v. or oral doses. TSIA (99.2%) bound highly to plasma proteins, among which lipoprotein played an important role (77.5%). After single oral administrations of 7, 21, and 63 mg/kg of TSIA, the absorption was extremely poor with an absolute bioavailability below 3.5%. Absorptive saturation was deduced from the fact that the AUC and Cmax increased less proportionally to the dose, and the tmax was significantly prolonged. In conclusion, TSIA has a suitable pharmacokinetic behavior except for its poor absorption due to the low solubility and poor membrane permeability [83].

A second study [84] evaluated the pharmacokinetic figures of CPT, TSI and TSIA after the administration of a solid dispersion with poloxamer 407 of a special extract of S. miltiorrhiza containing ca. 25.0% CTS, 1.25% TSI and 4.60% TSIA. Water solubility of CTS, TSI and TSIA in the dispersion was increased ca. 59-, 20- and 148-folds. The in vivo bioavailability of CTS was also increased by solid dispersion formulation, at least 2.5-fold compared with that of the control group [84].

In a further study, TSIIA was formulated in a ternary solid dispersion pellets with the combination of poloxynylpyrrolidone and poloxamer 188 as dispersing carriers. The formulation remarkably promote the dissolution rate of TSIIA from 60% to 100% after 60 min. The in vivo test showed that the AUC0–t and Cmax were increased 5.40 and 8.97 times more than that of TSIIA. Tmax value was shortened (3.80 ± 0.398 h), compared to TSIIA with (5.52 ± 0.738 h) [85].

Moreover, a solid dispersion (weight ratio 1:9) of TSIA with low-molecular-weight chitosan (molecular weight 3.0 × 10⁴, degree of deacetylation 90%) was developed and evaluated the in vitro dissolution and in vivo performance. At 1 h, the extent of dissolution of TSIA increased about 368.2% compared with the pure drug. In vivo test showed that TSIA solid dispersion system presented a larger AUC0–t, which was 0.67 times that of physical mixtures and 1.17 times that of pure TSIA. Additionally, the solid dispersion generated obviously higher Cmax and shortened Tmax compared with TSIIA and physical, which may be attributed to the rapid absorption rate resulting from the high dispersion of TSIIA in the carrier by potentiating its dissolution and to the absorption-enhancing effect of chitosan. As a result the relative bioavailability (%) of physical mixture was 130%, while that of the solid dispersion was 217% [86].

Nano formulations based on stealth (modified by Poloxamer 188) or non-stealth TSIIA-loaded solid lipid nanoparticles (TSIIA-SLNs and TSIIA-NSLNs, respectively) were developed and compared for the in vivo pharmacokinetics with unformulated TSIIA, after a single dose i.v. injection to rat of a dose corresponding to 1.33 mg/kg [87]. AUCs of TSIIA-SLNs and TSIIA-NSLNs were 1.28 and 3.70 times than that of TSIIA, respectively. TSIIA-SLNs had generated a long circulating time in the blood with a mean residence time of 5.286 h, compared to the value of 3.051 h of TSIIA-NSLNs and of 0.820 h for TSIIA. As expected, Poloxamer 188 modification on SLNs reduced opsonization by serum proteins and the macrophage uptake, exhibiting much longer circulation lifetime times for TSIIA with respect to non-stealth formulations [87].

In a further pharmacokinetic study, CTS-loaded SLNs (prepared with glyceryl monostearate, GMS-SLNs, or Compritol 888 ATO, CP-SLNs, as lipid matrices) were orally administered in rats at single dose of 16 mg/kg. The GMS-SLNs and CP-SLNs resulted in a decrease in Cmax and MRT of CTS compared with the CTS suspension (20.89 µg/ml). The AUC0–t of CTS in the SLNs was 148-folds. The AUC0–t bioavailability of CTS was also increased 5.40 and 8.97 times more than that of TSIIA. Tmax value was shortened (3.80 ± 0.398 h), compared to TSIIA with (5.52 ± 0.738 h) [85].
with that of a CTS suspension; it was between ca. 185% and 205%. Finally, the incorporation of CTS in SLNs also decreased the metabolism of CTS to TSIIA [88].

Moreover, a pharmacokinetic study was carried out with an inclusion complex of CTS and hydroxypropyl-β-cyclodextrin in dogs and rats [89]. The bioavailability of CTS in rats was ca. 6.9% at a dose of 60 mg/kg and ca. 11.1% in dogs at a dose of 53.4 mg/kg. The t_\(1/2\) of the compound in rats and dogs was 5.3–7.4 h and 6.0–10.0 h, respectively. CTS showed a high accumulation in the intestine, lungs, and liver after oral administration, while the lungs, liver, and heart had the highest level following i.v. administration. Excretion data in rats showed that CTS and its metabolites were mainly eliminated from feces and bile, and the dose recovery rate was 0.02, 2.2, and 14.9% in urine, bile, and feces, respectively [89].

Similarly, the effect of 2-hydroxypropyl-β-cyclodextrin on the aqueous solubility, dissolution rate, and intestinal permeability of the TSIIA in the duodenum, jejunum, and ileum, was enhanced by the inclusion complex about 5.2, 5.8, and 4.8 times, respectively [89].

Besides the extensive studies reporting on the biological mechanisms of depsides and tanshinones, pharmacokinetics studies are still very limited and not conclusive. Clearly, the oral bioavailability of both depsides and tanshinones is quite low, because depsides have a high protein binding ability. However, there is a high metabolic clearance rate of both depsides and tanshinones, which makes it difficult to determine their bioavailability and pharmacokinetics in humans [88].

Concluding Remarks

Modern science has considered S. miltiorrhiza a sort of a gold bul sub, a panacea, and hundreds of studies have been performed to demonstrate various mechanisms of actions and possible implications in different therapeutic approaches. Attention has been mainly related to tanshinones and depsides, even if recently another class of constituents, the fraction of polysaccharides, has also been successfully investigated in rats (125, 250, 500 mg/kg, 10 days by gavage) [91].

Both depsides and tanshinones are safe with multiple pharmacological actions and they may act at multiple molecular targets. Various in vivo and in vitro studies support a possible role of these different constituents to treat CNS neuronal injury and degeneration. The different mechanisms can have an important role in the different pathologies, both the acute ones such as stroke and cerebral ischemia, traumatic brain injury, and epilepsy, and also chronic CNS diseases such as multiple sclerosis, AD, Parkinson’s disease, schizophrenia, and so on.

Conflict of Interest

The authors declare no conflict of interest.

References

ponent of TCM, are mediated by estrogen receptor activation and inhibi-

Xing Y, Tu J, Zhang L, Gao L, Xi T. Anti-angiogenic effect of tanshinone IIA involves inhibition of the VEGF/VEGFR2 pathway in vascular endothelial cells. Oncol Rep 2015; 33: 163–170

Wang Q, Yu X, Patal K, Hu R, Chang S, Zhang G, Jiang J. Tanshinones inhibit amyloid aggregation by amyloid-β peptide, disaggregate amy-
loid fibrils, and protect cultured cells. ACS Chem Neurosci 2013; 4: 1004–1015

Zhou Y, Li W, Xu L, Chen L. In Salvia miltiorrhiza, phenolic acids possess protective properties against amyloid β-cytotoxicity, and tanshin-
one acts as acetylcholinesterase inhibitors. Environ Toxicol Pharmacol 2011; 31: 443–452

Liu T, Liu J, Chen H, Sun QR, Xu JH, Hu HT. The neuropeptotrophic effects of tanshi-
one IIA on β-amylod-induced toxicity in rat cortical neurons. Neuro-
science 2012; 35. Behav Brain Res 2007; 180: 139

Yong SY, Chen HL, Lee CY, Choi JY, Lee PY, Tsai HC, Lin YL, Chen CM. Act-
ive component of Danshen (Salvia miltiorrhiza Bunge), tanshinone I attenuates lung tumorgenesis via inhibitions of VEGF, cyclin A, and cy-
clin B Expressions. Evid Based Complement Alternat Med 2013; 2013: 319247

Qian YH, Xiao Q, Xu J. TanshinoneIla and cryptotanshinone protect against hypoxiainduced mitochondrial apoptosis in H9c2 cells. PLoS One 2013; 8: e51720

pairments induced by scopoline on passive avoidance tasks in mice. Eur J Pharmacol 2007; 574: 140–147

Kim DH, Jeon SJ, Jung JW, Lee S, Yoon BH, Shin BY, Son KH, Cheong JH, Kim YS, Kang SS, Ko KH, Ryu JH. Tanshinone compounds improve memory im-
pairments induced by scopolamine on passive avoidance tasks in mice. Eur J Pharmacol 2007; 574: 140–147

Zhang H, Liu YQ, Jiang Q, Li KR, Zhao YX, Cao C, Yao J. Salvianolic acid B, an antioxidant from Salvia miltiorrhiza, inhibits amyloid-β fibril forma-
tion and disaggregates preformed fibrils and protects against Abeta-

Zhang H, Liu YQ, Jiang Q, Li KR, Zhao YX, Cao C, Yao J. Salvianolic acid B protects RPE cells against oxidative stress through activation of Nrf2/

Wang T, Fu F, Han B, Zhang L, Xiang D. Danshensu ameliorates the cognitive decline in streptozotocin-induced diabetic mice by attenuating advanced glycation end product-mediated neuroinflammation. J Neu-
roimmunol 2012; 245: 79–86

Xie SF, Xie ZQ, Xie YR, Cheng XR, Duan XM, Tang X, Shi YH, Le GW, Xia SF, Xie ZQ, Duan XM, Tang X, Shi YH, Le GW, Xia SF, Xie ZQ, Duan XM, Tang X, Shi YH, Le GW, Xia SF, Xie ZQ, Duan XM, Tang X, Shi YH, Le GW.
damage in a human hepatoma cell line (Hep G2). J Appl Toxicol 2004; 24: 289–296
68. Chen YF, Jaw I, Shiao MS, Tsai TH. 69: Steiner J, Schiltz K, Bernstein HG, Bogerts B.