J Knee Surg 2016; 29(03): 235-241
DOI: 10.1055/s-0035-1549026
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Development of a Novel Canine Model for Posttraumatic Osteoarthritis of the Knee

Olubusola A. Brimmo
1   Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
,
Ferris Pfeiffer
2   Comparative Orthopaedic Laboratory, University of Missouri, Columbia, Missouri
,
Chantelle C. Bozynski
2   Comparative Orthopaedic Laboratory, University of Missouri, Columbia, Missouri
,
Keiichi Kuroki
2   Comparative Orthopaedic Laboratory, University of Missouri, Columbia, Missouri
,
Cristi Cook
2   Comparative Orthopaedic Laboratory, University of Missouri, Columbia, Missouri
,
Aaron Stoker
2   Comparative Orthopaedic Laboratory, University of Missouri, Columbia, Missouri
,
Seth L. Sherman
1   Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
,
Farrah Monibi
2   Comparative Orthopaedic Laboratory, University of Missouri, Columbia, Missouri
,
James L. Cook
1   Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
2   Comparative Orthopaedic Laboratory, University of Missouri, Columbia, Missouri
› Author Affiliations
Further Information

Publication History

02 January 2015

10 February 2015

Publication Date:
18 April 2015 (online)

Abstract

Translational models of posttraumatic osteoarthritis (PTOA) that accurately represent clinical pathology need to be developed. This study assessed a novel canine model for PTOA using impact injury. Impacts were delivered to the medial femoral condyle of dogs using a custom-designed impactor at 20, 40, or 60 MPa. Functional assessments and magnetic resonance imaging (MRI) were performed at 2 and 12 weeks, and arthroscopic and histologic assessments were performed at 12 weeks after injury. At 2 and 12 weeks, dogs had observable lameness, knee pain, effusion, loss in range of motion (ROM) and dysfunction in both hindlimbs with severity correlated strongly (r > 0.77) to impact level. At 12 weeks, function, pain, effusion, and ROM were significantly (p < 0.049) worse in knees impacted at 40 and 60 MPa compared with 20 MPa. MRI showed consistent cartilage and subchondral bone marrow lesions, and arthroscopy revealed synovitis and cartilage destruction in impacted knees, with increased severity for 40 and 60 MPa impacts. Histopathology was significantly (p = 0.049) more severe in 40 and 60 MPa and strongly correlated (r = 0.93) to impact level. This novel translational model appears to be valid for investigation of PTOA, including determination of temporal mechanisms of disease and preclinical testing for preventative and therapeutic strategies.

 
  • References

  • 1 Murphy L, Schwartz TA, Helmick CG , et al. Lifetime risk of symptomatic knee osteoarthritis. Arthritis Rheum 2008; 59 (9) 1207-1213
  • 2 Brown TD, Johnston RC, Saltzman CL, Marsh JL, Buckwalter JA. Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. J Orthop Trauma 2006; 20 (10) 739-744
  • 3 Buckwalter JA. Articular cartilage injuries. Clin Orthop Relat Res 2002; (402) 21-37
  • 4 Shirazi R, Shirazi-Adl A. Computational biomechanics of articular cartilage of human knee joint: effect of osteochondral defects. J Biomech 2009; 42 (15) 2458-2465
  • 5 Roemer FW, Guermazi A, Javaid MK , et al; MOST Study investigators. Change in MRI-detected subchondral bone marrow lesions is associated with cartilage loss: the MOST Study. A longitudinal multicentre study of knee osteoarthritis. Ann Rheum Dis 2009; 68 (9) 1461-1465
  • 6 Dedrick DK, Goldstein SA, Brandt KD, O'Connor BL, Goulet RW, Albrecht M. A longitudinal study of subchondral plate and trabecular bone in cruciate-deficient dogs with osteoarthritis followed up for 54 months. Arthritis Rheum 1993; 36 (10) 1460-1467
  • 7 Raynauld JP, Martel-Pelletier J, Berthiaume MJ , et al. Correlation between bone lesion changes and cartilage volume loss in patients with osteoarthritis of the knee as assessed by quantitative magnetic resonance imaging over a 24-month period. Ann Rheum Dis 2008; 67 (5) 683-688
  • 8 Hunter DJ, Gerstenfeld L, Bishop G , et al. Bone marrow lesions from osteoarthritis knees are characterized by sclerotic bone that is less well mineralized. Arthritis Res Ther 2009; 11 (1) R11
  • 9 Koo KH, Ahn IO, Kim R , et al. Bone marrow edema and associated pain in early stage osteonecrosis of the femoral head: prospective study with serial MR images. Radiology 1999; 213 (3) 715-722
  • 10 Felson DT, Chaisson CE, Hill CL , et al. The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med 2001; 134 (7) 541-549
  • 11 Felson DT, Niu J, Guermazi A , et al. Correlation of the development of knee pain with enlarging bone marrow lesions on magnetic resonance imaging. Arthritis Rheum 2007; 56 (9) 2986-2992
  • 12 Frobell RB, Roos HP, Roos EM , et al. The acutely ACL injured knee assessed by MRI: are large volume traumatic bone marrow lesions a sign of severe compression injury?. Osteoarthritis Cartilage 2008; 16 (7) 829-836
  • 13 Reichenbach S, Guermazi A, Niu J , et al. Prevalence of bone attrition on knee radiographs and MRI in a community-based cohort. Osteoarthritis Cartilage 2008; 16 (9) 1005-1010
  • 14 Hunter DJ, Zhang Y, Niu J , et al. Increase in bone marrow lesions associated with cartilage loss: a longitudinal magnetic resonance imaging study of knee osteoarthritis. Arthritis Rheum 2006; 54 (5) 1529-1535
  • 15 Lotz MK, Kraus VB. New developments in osteoarthritis. Posttraumatic osteoarthritis: pathogenesis and pharmacological treatment options. Arthritis Res Ther 2010; 12 (3) 211
  • 16 Buckwalter JA, Brown TD. Joint injury, repair, and remodeling: roles in post-traumatic osteoarthritis. Clin Orthop Relat Res 2004; (423) 7-16
  • 17 Furman BD, Olson SA, Guilak F. The development of posttraumatic arthritis after articular fracture. J Orthop Trauma 2006; 20 (10) 719-725
  • 18 Scott CC, Athanasiou KA. Mechanical impact and articular cartilage. Crit Rev Biomed Eng 2006; 34 (5) 347-378
  • 19 Glasson SS, Blanchet TJ, Morris EA. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthritis Cartilage 2007; 15 (9) 1061-1069
  • 20 D'Lima DD, Hashimoto S, Chen PC, Colwell Jr CW, Lotz MK. Impact of mechanical trauma on matrix and cells. Clin Orthop Relat Res 2001; (391, Suppl): S90-S99
  • 21 Pond MJ, Nuki G. Experimentally-induced osteoarthritis in the dog. Ann Rheum Dis 1973; 32 (4) 387-388
  • 22 Brandt KD, Braunstein EM, Visco DM, O'Connor B, Heck D, Albrecht M. Anterior (cranial) cruciate ligament transection in the dog: a bona fide model of osteoarthritis, not merely of cartilage injury and repair. J Rheumatol 1991; 18 (3) 436-446
  • 23 Visco DM, Hill MA, Widmer WR, Johnstone B, Myers SL. Experimental osteoarthritis in dogs: a comparison of the Pond-Nuki and medial arthrotomy methods. Osteoarthritis Cartilage 1996; 4 (1) 9-22
  • 24 Bove SE, Laemont KD, Brooker RM , et al. Surgically induced osteoarthritis in the rat results in the development of both osteoarthritis-like joint pain and secondary hyperalgesia. Osteoarthritis Cartilage 2006; 14 (10) 1041-1048
  • 25 Gilbertson EM. Development of periarticular osteophytes in experimentally induced osteoarthritis in the dog. A study using microradiographic, microangiographic, and fluorescent bone-labelling techniques. Ann Rheum Dis 1975; 34 (1) 12-25
  • 26 Lockwood KA, Chu BT, Anderson MJ, Haudenschild DR, Christiansen BA. Comparison of loading rate-dependent injury modes in a murine model of post-traumatic osteoarthritis. J Orthop Res 2014; 32 (1) 79-88
  • 27 Newberry WN, Garcia JJ, Mackenzie CD, Decamp CE, Haut RC. Analysis of acute mechanical insult in an animal model of post-traumatic osteoarthrosis. J Biomech Eng 1998; 120 (6) 704-709
  • 28 Tochigi Y, Zhang P, Rudert MJ , et al. A novel impaction technique to create experimental articular fractures in large animal joints. Osteoarthritis Cartilage 2013; 21 (1) 200-208
  • 29 Huebner KD, Shrive NG, Frank CB. New surgical model of post-traumatic osteoarthritis: isolated intra-articular bone injury in the rabbit. J Orthop Res 2013; 31 (6) 914-920
  • 30 Boyce MK, Trumble TN, Carlson CS, Groschen DM, Merritt KA, Brown MP. Non-terminal animal model of post-traumatic osteoarthritis induced by acute joint injury. Osteoarthritis Cartilage 2013; 21 (5) 746-755
  • 31 Cook JL, Kuroki K, Visco D, Pelletier JP, Schulz L, Lafeber FP. The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the dog. Osteoarthritis Cartilage 2010; 18 (18) (Suppl. 03) S66-S79
  • 32 Pritzker KP, Gay S, Jimenez SA , et al. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage 2006; 14 (1) 13-29
  • 33 Xu L, Hayashi D, Roemer FW, Felson DT, Guermazi A. Magnetic resonance imaging of subchondral bone marrow lesions in association with osteoarthritis. Semin Arthritis Rheum 2012; 42 (2) 105-118
  • 34 Sharkey PF, Cohen SB, Leinberry CF, Parvizi J. Subchondral bone marrow lesions associated with knee osteoarthritis. Am J Orthop 2012; 41 (9) 413-417
  • 35 Libicher M, Ivancic M, Hoffmann M, Wenz W. Early changes in experimental osteoarthritis using the Pond-Nuki dog model: technical procedure and initial results of in vivo MR imaging. Eur Radiol 2005; 15 (2) 390-394
  • 36 Baird DK, Hathcock JT, Kincaid SA , et al. Low-field magnetic resonance imaging of early subchondral cyst-like lesions in induced cranial cruciate ligament deficient dogs. Vet Radiol Ultrasound 1998; 39 (3) 167-173
  • 37 Martig S, Boisclair J, Konar M, Spreng D, Lang J. MRI characteristics and histology of bone marrow lesions in dogs with experimentally induced osteoarthritis. Vet Radiol Ultrasound 2007; 48 (2) 105-112
  • 38 Nolte-Ernsting CC, Adam G, Bühne M, Prescher A, Günther RW. MRI of degenerative bone marrow lesions in experimental osteoarthritis of canine knee joints. Skeletal Radiol 1996; 25 (5) 413-420
  • 39 Christiansen BA, Anderson MJ, Lee CA, Williams JC, Yik JH, Haudenschild DR. Musculoskeletal changes following non-invasive knee injury using a novel mouse model of post-traumatic osteoarthritis. Osteoarthritis Cartilage 2012; 20 (7) 773-782
  • 40 Poulet B, Hamilton RW, Shefelbine S, Pitsillides AA. Characterizing a novel and adjustable noninvasive murine joint loading model. Arthritis Rheum 2011; 63 (1) 137-147
  • 41 Changoor A, Coutu JP, Garon M, Quenneville E, Hurtig MB, Buschmann MD. Streaming potential-based arthroscopic device is sensitive to cartilage changes immediately post-impact in an equine cartilage injury model. J Biomech Eng 2011; 133 (6) 061005
  • 42 O'Connor BL, Visco DM, Heck DA, Myers SL, Brandt KD. Gait alterations in dogs after transection of the anterior cruciate ligament. Arthritis Rheum 1989; 32 (9) 1142-1147
  • 43 Borrelli Jr J, Zhu Y, Burns M, Sandell L, Silva MJ. Cartilage tolerates single impact loads of as much as half the joint fracture threshold. Clin Orthop Relat Res 2004; (426) 266-273
  • 44 Matthews LS, Sonstegard DA, Henke JA. Load bearing characteristics of the patello-femoral joint. Acta Orthop Scand 1977; 48 (5) 511-516
  • 45 Hodge WA, Carlson KL, Fijan RS , et al. Contact pressures from an instrumented hip endoprosthesis. J Bone Joint Surg Am 1989; 71 (9) 1378-1386
  • 46 Torzilli PA, Grigiene R, Borrelli Jr J, Helfet DL. Effect of impact load on articular cartilage: cell metabolism and viability, and matrix water content. J Biomech Eng 1999; 121 (5) 433-441
  • 47 Repo RU, Finlay JB. Survival of articular cartilage after controlled impact. J Bone Joint Surg Am 1977; 59 (8) 1068-1076
  • 48 Haut RC. Contact pressures in the patellofemoral joint during impact loading on the human flexed knee. J Orthop Res 1989; 7 (2) 272-280
  • 49 Bolam CJ, Hurtig MB, Cruz A, McEwen BJ. Characterization of experimentally induced post-traumatic osteoarthritis in the medial femorotibial joint of horses. Am J Vet Res 2006; 67 (3) 433-447