J Pediatr Genet 2016; 05(01): 002-014
DOI: 10.1055/s-0035-1557108
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Techniques and Approaches to Genetic Analyses in Nephrological Disorders

Laurel K. Willig
1   Center for Pediatric Genomic Medicine, Kansas City, Missouri, United States
2   Division of Nephrology, Children's Mercy Hospital, Kansas City, Missouri, United States
3   Department of Pediatrics, University of Missouri-Kansas City, Kansas City, Missouri, United States
› Author Affiliations
Further Information

Publication History

10 January 2015

20 February 2015

Publication Date:
13 August 2015 (online)

Abstract

Inherited renal disease is a leading cause of morbidity and mortality in pediatric nephrology. High throughput advancements in genomics have led to greater understanding of the biologic underpinnings of these diseases. However, the underlying genetic changes explain only part of the molecular biology that contributes to disease manifestation and progression. Other omics technologies will provide a more complete picture of these cellular processes. This review discusses these omics technologies in the context of pediatric renal disease.

 
  • References

  • 1 Devuyst O, Knoers NV, Remuzzi G, Schaefer F ; Board of the Working Group for Inherited Kidney Diseases of the European Renal Association and European Dialysis and Transplant Association. Rare inherited kidney diseases: challenges, opportunities, and perspectives. Lancet 2014; 383 (9931) 1844-1859
  • 2 Reeders ST, Breuning MH, Davies KE , et al. A highly polymorphic DNA marker linked to adult polycystic kidney disease on chromosome 16. Nature 1985; 317 (6037) 542-544
  • 3 NCBI handbook. Bethesda, MD. National Library of Medicine, National Center for Biotechnology Information. 2002 . Available at: http://www.ncbi.nlm.nih.gov/books/NBK21091/ . Accessed October 1, 2014
  • 4 Renkema KY, Stokman MF, Giles RH, Knoers NV. Next-generation sequencing for research and diagnostics in kidney disease. Nat Rev Nephrol 2014; 10 (8) 433-444
  • 5 Artuso R, Fallerini C, Dosa L , et al. Advances in Alport syndrome diagnosis using next-generation sequencing. Eur J Hum Genet 2012; 20 (1) 50-57
  • 6 Chatterjee R, Hoffman M, Cliften P, Seshan S, Liapis H, Jain S. Targeted exome sequencing integrated with clinicopathological information reveals novel and rare mutations in atypical, suspected and unknown cases of Alport syndrome or proteinuria. PLoS ONE 2013; 8 (10) e76360
  • 7 McCarthy HJ, Bierzynska A, Wherlock M , et al; RADAR the UK SRNS Study Group. Simultaneous sequencing of 24 genes associated with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 2013; 8 (4) 637-648
  • 8 Munroe PB, Barnes MR, Caulfield MJ. Advances in blood pressure genomics. Circ Res 2013; 112 (10) 1365-1379
  • 9 Hildebrandt F. Genetic kidney diseases. Lancet 2010; 375 (9722) 1287-1295
  • 10 MacArthur DG, Manolio TA, Dimmock DP , et al. Guidelines for investigating causality of sequence variants in human disease. Nature 2014; 508 (7497) 469-476
  • 11 Bansal V, Libiger O, Torkamani A, Schork NJ. Statistical analysis strategies for association studies involving rare variants. Nat Rev Genet 2010; 11 (11) 773-785
  • 12 Robinson MD, Kahraman A, Law CW , et al. Statistical methods for detecting differentially methylated loci and regions. Front Genet 2014; 5: 324
  • 13 Angelini C, Costa V. Understanding gene regulatory mechanisms by integrating ChIP-seq and RNA-seq data: statistical solutions to biological problems. Front Cell Dev Biol 2014; 2: 51
  • 14 Marstrand TT, Storey JD. Identifying and mapping cell-type-specific chromatin programming of gene expression. Proc Natl Acad Sci U S A 2014; 111 (6) E645-E654
  • 15 Lee S, Emond MJ, Bamshad MJ , et al; NHLBI GO Exome Sequencing Project—ESP Lung Project Team. Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. Am J Hum Genet 2012; 91 (2) 224-237
  • 16 Soneson C, Delorenzi M. A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics 2013; 14: 91
  • 17 Matthiesen R, Carvalho AS. Methods and algorithms for quantitative proteomics by mass spectrometry. Methods Mol Biol 2013; 1007: 183-217
  • 18 Matthiesen R, Azevedo L, Amorim A, Carvalho AS. Discussion on common data analysis strategies used in MS-based proteomics. Proteomics 2011; 11 (4) 604-619
  • 19 Pernemalm M, Lehtiö J. Mass spectrometry-based plasma proteomics: state of the art and future outlook. Expert Rev Proteomics 2014; 11 (4) 431-448
  • 20 Sugimoto M, Kawakami M, Robert M, Soga T, Tomita M. Bioinformatics Tools for Mass Spectroscopy-Based Metabolomic Data Processing and Analysis. Curr Bioinform 2012; 7 (1) 96-108
  • 21 Schäfer M, Lkhagvasuren O, Klein HU , et al. Integrative analyses for omics data: a Bayesian mixture model to assess the concordance of ChIP-chip and ChIP-seq measurements. J Toxicol Environ Health A 2012; 75 (8-10) 461-470
  • 22 Mensaert K, Denil S, Trooskens G, Van Criekinge W, Thas O, De Meyer T. Next-generation technologies and data analytical approaches for epigenomics. Environ Mol Mutagen 2014; 55 (3) 155-170
  • 23 Replogle JM, De Jager PL. Epigenomics in translational research. Transl Res 2015; 165 (1) 7-11
  • 24 Chi YY, Gribbin MJ, Johnson JL, Muller KE. Power calculation for overall hypothesis testing with high-dimensional commensurate outcomes. Stat Med 2014; 33 (5) 812-827
  • 25 Rizzo JM, Buck MJ. Key principles and clinical applications of “next-generation” DNA sequencing. Cancer Prev Res (Phila) 2012; 5 (7) 887-900
  • 26 Witasp A, Ekström TJ, Lindholm B, Stenvinkel P, Schalling M, Nordfors L. Novel insights from genetic and epigenetic studies in understanding the complex uraemic phenotype. Nephrol Dial Transplant 2014; 29 (5) 964-971
  • 27 Mischak H, Ioannidis JP, Argiles A , et al. Implementation of proteomic biomarkers: making it work. Eur J Clin Invest 2012; 42 (9) 1027-1036
  • 28 Weiss MM, Van der Zwaag B, Jongbloed JD , et al. Best practice guidelines for the use of next-generation sequencing applications in genome diagnostics: a national collaborative study of Dutch genome diagnostic laboratories. Hum Mutat 2013; 34 (10) 1313-1321
  • 29 Chervitz SA, Deutsch EW, Field D , et al. Data standards for Omics data: the basis of data sharing and reuse. Methods Mol Biol 2011; 719: 31-69
  • 30 Field D, Garrity G, Gray T , et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 2008; 26 (5) 541-547
  • 31 Mardis ER. Next-generation sequencing platforms. Annu Rev Anal Chem (Palo Alto, Calif) 2013; 6: 287-303
  • 32 van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. Ten years of next-generation sequencing technology. Trends Genet 2014; 30 (9) 418-426
  • 33 Riebler A, Menigatti M, Song JZ , et al. BayMeth: improved DNA methylation quantification for affinity capture sequencing data using a flexible Bayesian approach. Genome Biol 2014; 15 (2) R35
  • 34 Ross MG, Russ C, Costello M , et al. Characterizing and measuring bias in sequence data. Genome Biol 2013; 14 (5) R51
  • 35 Buermans HP, den Dunnen JT. Next generation sequencing technology: Advances and applications. Biochim Biophys Acta 2014; 1842 (10) 1932-1941
  • 36 Hui P. Next generation sequencing: chemistry, technology and applications. Top Curr Chem 2014; 336: 1-18
  • 37 Liu L, Li Y, Li S , et al. Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012; 2012: 251364
  • 38 van Dijk EL, Jaszczyszyn Y, Thermes C. Library preparation methods for next-generation sequencing: tone down the bias. Exp Cell Res 2014; 322 (1) 12-20
  • 39 Coonrod EM, Durtschi JD, Margraf RL, Voelkerding KV. Developing genome and exome sequencing for candidate gene identification in inherited disorders: an integrated technical and bioinformatics approach. Arch Pathol Lab Med 2013; 137 (3) 415-433
  • 40 Pattnaik S, Vaidyanathan S, Pooja DG, Deepak S, Panda B. Customisation of the exome data analysis pipeline using a combinatorial approach. PLoS ONE 2012; 7 (1) e30080
  • 41 Bao S, Jiang R, Kwan W, Wang B, Ma X, Song YQ. Evaluation of next-generation sequencing software in mapping and assembly. J Hum Genet 2011; 56 (6) 406-414
  • 42 Ruffalo M, LaFramboise T, Koyutürk M. Comparative analysis of algorithms for next-generation sequencing read alignment. Bioinformatics 2011; 27 (20) 2790-2796
  • 43 Pirooznia M, Kramer M, Parla J , et al. Validation and assessment of variant calling pipelines for next-generation sequencing. Hum Genomics 2014; 8: 14
  • 44 Yi M, Zhao Y, Jia L, He M, Kebebew E, Stephens RM. Performance comparison of SNP detection tools with illumina exome sequencing data—an assessment using both family pedigree information and sample-matched SNP array data. Nucleic Acids Res 2014; 42 (12) e101
  • 45 Liu X, Han S, Wang Z, Gelernter J, Yang BZ. Variant callers for next-generation sequencing data: a comparison study. PLoS ONE 2013; 8 (9) e75619
  • 46 Voelkerding KV, Dames SA, Durtschi JD. Next-generation sequencing: from basic research to diagnostics. Clin Chem 2009; 55 (4) 641-658
  • 47 Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER. The next-generation sequencing revolution and its impact on genomics. Cell 2013; 155 (1) 27-38
  • 48 Goh G, Choi M. Application of whole exome sequencing to identify disease-causing variants in inherited human diseases. Genomics Inform 2012; 10 (4) 214-219
  • 49 Lee H, Deignan JL, Dorrani N , et al. Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA 2014; 312 (18) 1880-1887
  • 50 Xue Y, Chen Y, Ayub Q , et al; 1000 Genomes Project Consortium. Deleterious- and disease-allele prevalence in healthy individuals: insights from current predictions, mutation databases, and population-scale resequencing. Am J Hum Genet 2012; 91 (6) 1022-1032
  • 51 Hunt KA, Smyth DJ, Balschun T , et al; Type 1 Diabetes Genetics Consortium; UK Inflammatory Bowel Disease (IBD) Genetics Consortium; Wellcome Trust Case Control Consortium. Rare and functional SIAE variants are not associated with autoimmune disease risk in up to 66,924 individuals of European ancestry. Nat Genet 2012; 44 (1) 3-5
  • 52 Brown EJ, Pollak MR, Barua M. Genetic testing for nephrotic syndrome and FSGS in the era of next-generation sequencing. Kidney Int 2014; 85 (5) 1030-1038
  • 53 Hwang DY, Dworschak GC, Kohl S , et al. Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney Int 2014; 85 (6) 1429-1433
  • 54 Lemaire M, Frémeaux-Bacchi V, Schaefer F , et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat Genet 2013; 45 (5) 531-536
  • 55 Otto EA, Ramaswami G, Janssen S , et al; GPN Study Group. Mutation analysis of 18 nephronophthisis associated ciliopathy disease genes using a DNA pooling and next generation sequencing strategy. J Med Genet 2011; 48 (2) 105-116
  • 56 Douglas AP, Vance DR, Kenny EM, Morris DW, Maxwell AP, McKnight AJ. Next-generation sequencing of the mitochondrial genome and association with IgA nephropathy in a renal transplant population. Sci Rep 2014; 4: 7379
  • 57 Lister R, Pelizzola M, Dowen RH , et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009; 462 (7271) 315-322
  • 58 Pieterse E, van der Vlag J. Breaking immunological tolerance in systemic lupus erythematosus. Front Immunol 2014; 5: 164
  • 59 Ballereau S, Glaab E, Kolodkin A , et al. Functional genomics, proteomics, metabolomics and bioinformatics for systems biology. In: Prokop B, , ed. Systems Biology. Dordrecht, The Netherlands: Springer Science and Business Media; 2013: 3-41
  • 60 Beckerman P, Ko YA, Susztak K. Epigenetics: a new way to look at kidney diseases. Nephrol Dial Transplant 2014; 29 (10) 1821-1827
  • 61 Furey TS. ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet 2012; 13 (12) 840-852
  • 62 Zentner GE, Henikoff S. Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 2013; 20 (3) 259-266
  • 63 Rivera CM, Ren B. Mapping human epigenomes. Cell 2013; 155 (1) 39-55
  • 64 Banerjee T, Chakravarti D. A peek into the complex realm of histone phosphorylation. Mol Cell Biol 2011; 31 (24) 4858-4873
  • 65 Liu Y, Liu K, Qin S, Xu C, Min J. Epigenetic targets and drug discovery: part 1: histone methylation. Pharmacol Ther 2014; 143 (3) 275-294
  • 66 Meyer CA, Liu XS. Identifying and mitigating bias in next-generation sequencing methods for chromatin biology. Nat Rev Genet 2014; 15 (11) 709-721
  • 67 Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet 2013; 14 (3) 204-220
  • 68 Mill J, Heijmans BT. From promises to practical strategies in epigenetic epidemiology. Nat Rev Genet 2013; 14 (8) 585-594
  • 69 Heijmans BT, Mill J. Commentary: The seven plagues of epigenetic epidemiology. Int J Epidemiol 2012; 41 (1) 74-78
  • 70 Woroniecki R, Gaikwad AB, Susztak K. Fetal environment, epigenetics, and pediatric renal disease. Pediatr Nephrol 2011; 26 (5) 705-711
  • 71 Woo YM, Bae JB, Oh YH , et al. Genome-wide methylation profiling of ADPKD identified epigenetically regulated genes associated with renal cyst development. Hum Genet 2014; 133 (3) 281-297
  • 72 Xia S, Li X, Johnson T, Seidel C, Wallace DP, Li R. Polycystin-dependent fluid flow sensing targets histone deacetylase 5 to prevent the development of renal cysts. Development 2010; 137 (7) 1075-1084
  • 73 Deng Y, Tsao BP. Advances in lupus genetics and epigenetics. Curr Opin Rheumatol 2014; 26 (5) 482-492
  • 74 McHale CM, Zhang L, Thomas R, Smith MT. Analysis of the transcriptome in molecular epidemiology studies. Environ Mol Mutagen 2013; 54 (7) 500-517
  • 75 Lahens NF, Kavakli IH, Zhang R , et al. IVT-seq reveals extreme bias in RNA sequencing. Genome Biol 2014; 15 (6) R86
  • 76 Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009; 10 (1) 57-63
  • 77 Milek M, Wyler E, Landthaler M. Transcriptome-wide analysis of protein-RNA interactions using high-throughput sequencing. Semin Cell Dev Biol 2012; 23 (2) 206-212
  • 78 Zhang C, Darnell RB. Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nat Biotechnol 2011; 29 (7) 607-614
  • 79 Shi L, Zhang Z, Yu AM , et al. The SLE transcriptome exhibits evidence of chronic endotoxin exposure and has widespread dysregulation of non-coding and coding RNAs. PLoS ONE 2014; 9 (5) e93846
  • 80 Abulaban KM, Brunner HI. Biomarkers for childhood-onset systemic lupus erythematosus. Curr Rheumatol Rep 2015; 17 (1) 471
  • 81 Ben-Dov IZ, Tan YC, Morozov P , et al. Urine microRNA as potential biomarkers of autosomal dominant polycystic kidney disease progression: description of miRNA profiles at baseline. PLoS ONE 2014; 9 (1) e86856
  • 82 Shapiro MD, Bagley J, Latz J , et al. MicroRNA expression data reveals a signature of kidney damage following ischemia reperfusion injury. PLoS ONE 2011; 6 (8) e23011
  • 83 Marrone AK, Ho J. MicroRNAs: potential regulators of renal development genes that contribute to CAKUT. Pediatr Nephrol 2014; 29 (4) 565-574
  • 84 Lin SY, Hsu WH, Lin CC, Chen CJ. Mass spectrometry-based proteomics in Chest Medicine, Gerontology, and Nephrology: subgroups omics for personalized medicine. Biomedicine (Taipei) 2014; 4: 25
  • 85 Käll L, Vitek O. Computational mass spectrometry-based proteomics. PLOS Comput Biol 2011; 7 (12) e1002277
  • 86 Klein J, Lacroix C, Caubet C , et al. Fetal urinary peptides to predict postnatal outcome of renal disease in fetuses with posterior urethral valves (PUV). Sci Transl Med 2013; 5 (198) 198ra106
  • 87 Abdennadher W, Chalouhi G, Dreux S , et al. Fetal urine biochemistry at 13-23 weeks in low urinary tract obstruction: criteria for in utero treatment. Ultrasound Obstet Gynecol 2014; ; In press. Doi: 10.1002/uog.14734
  • 88 Schanstra JP, Mischak H. Proteomic urinary biomarker approach in renal disease: from discovery to implementation. Pediatr Nephrol 2015; 30 (5) 713-725
  • 89 Smolinska A, Blanchet L, Buydens LM, Wijmenga SS. NMR and pattern recognition methods in metabolomics: from data acquisition to biomarker discovery: a review. Anal Chim Acta 2012; 750: 82-97
  • 90 Dharuri H, Demirkan A, van Klinken JB , et al. Genetics of the human metabolome, what is next?. Biochim Biophys Acta 2014; 1842 (10) 1923-1931
  • 91 Patti GJ, Yanes O, Siuzdak G. Innovation: Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 2012; 13 (4) 263-269
  • 92 Blydt-Hansen TD, Sharma A, Gibson IW, Mandal R, Wishart DS. Urinary metabolomics for noninvasive detection of borderline and acute T cell-mediated rejection in children after kidney transplantation. Am J Transplant 2014; 14 (10) 2339-2349
  • 93 Hanna MH, Brophy PD. Metabolomics in pediatric nephrology: emerging concepts. Pediatr Nephrol 2015; 30 (6) 881-887
  • 94 Conesa A, Mortazavi A. The common ground of genomics and systems biology. BMC Syst Biol 2014; 8 (Suppl. 02) S1
  • 95 Doi N, Zenno S, Ueda R, Ohki-Hamazaki H, Ui-Tei K, Saigo K. Short-interfering-RNA-mediated gene silencing in mammalian cells requires Dicer and eIF2C translation initiation factors. Curr Biol 2003; 13 (1) 41-46
  • 96 Giles RH, Ajzenberg H, Jackson PK. 3D spheroid model of mIMCD3 cells for studying ciliopathies and renal epithelial disorders. Nat Protoc 2014; 9 (12) 2725-2731
  • 97 Ekker SC. Morphants: a new systematic vertebrate functional genomics approach. Yeast 2000; 17 (4) 302-306
  • 98 Hwang WY, Fu Y, Reyon D , et al. Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLoS ONE 2013; 8 (7) e68708
  • 99 Orban PC, Chui D, Marth JD. Tissue- and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci U S A 1992; 89 (15) 6861-6865
  • 100 Reyes-Herrera PH, Ficarra E. Computational Methods for CLIP-seq Data Processing. Bioinform Biol Insights 2014; 8: 199-207
  • 101 Mischak H, Allmaier G, Apweiler R , et al. Recommendations for biomarker identification and qualification in clinical proteomics. Sci Transl Med 2010; 2 (46) 46ps42
  • 102 Abecasis GR, Auton A, Brooks LD , et al; 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature 2012; 491 (7422) 56-65
  • 103 Blake JA, Bult CJ, Eppig JT, Kadin JA, Richardson JE ; Mouse Genome Database Group. The Mouse Genome Database: integration of and access to knowledge about the laboratory mouse. Nucleic Acids Res 2014; 42 (Database issue): D810-D817
  • 104 Eckhardt F, Beck S, Gut IG, Berlin K. Future potential of the Human Epigenome Project. Expert Rev Mol Diagn 2004; 4 (5) 609-618
  • 105 Consortium EP ; ENCODE Project Consortium. A user's guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol 2011; 9 (4) e1001046
  • 106 Brandenberger R, Khrebtukova I, Thies RS , et al. MPSS profiling of human embryonic stem cells. BMC Dev Biol 2004; 4: 10
  • 107 Vizcaíno JA, Côté RG, Csordas A , et al. The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res 2013; 41 (Database issue) D1063-D1069
  • 108 Wishart DS, Jewison T, Guo AC , et al. HMDB 3.0—The Human Metabolome Database in 2013. Nucleic Acids Res 2013; 41 (Database issue): D801-D807
  • 109 Cohen CD, Kretzler M. Gene expression analyses of kidney biopsies: the European renal cDNA bank—Kröner-Fresenius biopsy bank [in German]. Pathologe 2009; 30 (2) 101-104
  • 110 EURenOmics Available at: http://www.eurenomics.eu/home/ . Accessed January 1, 2015
  • 111 McMahon AP, Aronow BJ, Davidson DR , et al; GUDMAP project. GUDMAP: the genitourinary developmental molecular anatomy project. J Am Soc Nephrol 2008; 19 (4) 667-671
  • 112 Harding SD, Armit C, Armstrong J , et al. The GUDMAP database—an online resource for genitourinary research. Development 2011; 138 (13) 2845-2853
  • 113 Gadegbeku CA, Gipson DS, Holzman LB , et al. Design of the Nephrotic Syndrome Study Network (NEPTUNE) to evaluate primary glomerular nephropathy by a multidisciplinary approach. Kidney Int 2013; 83 (4) 749-756
  • 114 Rieber N, Zapatka M, Lasitschka B , et al. Coverage bias and sensitivity of variant calling for four whole-genome sequencing technologies. PLoS ONE 2013; 8 (6) e66621
  • 115 Hatem A, Bozdağ D, Toland AE, Çatalyürek ÜV. Benchmarking short sequence mapping tools. BMC Bioinformatics 2013; 14: 184
  • 116 Xue Y, Ankala A, Wilcox WR, Hegde MR. Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing. Genet Med 2015; 17: 444-451
  • 117 Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 2013; 10 (12) 1213-1218
  • 118 Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res 2007; 17 (6) 877-885
  • 119 Harris RA, Wang T, Coarfa C , et al. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol 2010; 28 (10) 1097-1105
  • 120 Kawaji H, Lizio M, Itoh M , et al; FANTOM Consortium. Comparison of CAGE and RNA-seq transcriptome profiling using clonally amplified and single-molecule next-generation sequencing. Genome Res 2014; 24 (4) 708-717
  • 121 Annesley TM. Ion suppression in mass spectrometry. Clin Chem 2003; 49 (7) 1041-1044
  • 122 Perry RH, Cooks RG, Noll RJ. Orbitrap mass spectrometry: instrumentation, ion motion and applications. Mass Spectrom Rev 2008; 27 (6) 661-699