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More than 55% of all athletic injuries are incurred on the lower
extremity,1–4 while damage specific to the knee accounts for
approximately 15% of all athletic injuries.5 Overall, 43% of
these knee injuries are classified as strains or sprains, which
makes them the thirdmost prevalent form of lower extremity
injury with a rate of 102 incidents per 100,000 athletes per
year.6 Of these knee injuries, it is estimated that 45% involve
internal knee trauma, and 49% of those entail anterior cruci-
ate ligament (ACL) rupture,7 as 1 in 3,000 persons are likely to
suffer an ACL disruption each year.8 However, ACL injury is a
sex-specific event, as females are 2 to 10 times more likely to
suffer ACL disruption than their male counterparts,9–14which
produces an incidence rate of 1 ACL tear in every 50 to 70
female athletes per year.15 These high incidence rates of ACL
rupture lead to an estimated 250,000 ACL tears and 127,000
ACL reconstructions (ACLR) annually in the United States.16,17

With conservative repair estimates ranging from $5,000 to
$44,000 per ACLR depending on the type of repair and

severity of injury,13,18–20 the annual medical expense of
ACL injury treatments in the United States alone may exceed
$2 billion. Worldwide, it is estimated that the annual inci-
dence of ACL tears could reach as high as 2 million patients,21

which would exponentially increase these costs. Unfortu-
nately, despite the expense associated with ACLR, surgical
repair has not been found to significantly reduce the long-
term outlook of knee osteoarthritis compared with nonoper-
ative rehabilitation.22,23 As many as 86% of patients demon-
strated early onset osteoarthritis following ACLR and 75%
report degradation in knee quality of life within 20 years
postsurgery.23–25 For these reasons, the focus on treating ACL
injuries may be best served through identification and treat-
ment of modifiable injury risk factors that may prevent
ruptures before they happen.

Two- and three-dimensional (2D and 3D) motion analysis
systems have been used in vivo to identify, classify, and
associate biomechanical risk factors with the likelihood of
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Abstract Anterior cruciate ligament (ACL) injuries are common, catastrophic events that incur
large expense and lead to degradation of the knee. As such, various motion capture
techniques have been applied to identify athletes who are at increased risk for suffering
ACL injuries. The objective of this clinical commentary was to synthesize information
related to how motion capture analyses contribute to the identification of risk factors
that may predict relative injury risk within a population. Individuals employ both active
and passive mechanisms to constrain knee joint articulation during motion. There is
strong evidence to indicate that athletes who consistently classify as high-risk loaders
during landing suffer from combined joint stability deficits in both the active and passive
knee restraints. Implementation of prophylactic neuromuscular interventions and
biofeedback can effectively compensate for some of the deficiencies that result from
poor control of the active knee stabilizers and reduce the incidence of ACL injuries.
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future ACL injury within athletic populations (►Fig. 1). Spe-
cifically, in a cohort of 205 female athletes, 3Dmotion analysis
prospectively determined that those who went on to ACL
injury expressed larger knee abduction moments when
landing from a drop vertical jump task than did healthy
controls.26 This association between frontal plane knee tor-
que and increased ligament loading, which was initially
defined through motion analysis, has since been affirmed
in a multitude of in vitro, in situ, and in sim models.27–29 In

addition, 3D motion analysis has identified that decreased
knee flexion,30 increased hip adduction,31–33 and greater
trunk instability34–37 when landing from a jump are all
related to abnormal loading at the knee and potentially
increased ACL injury risk. Many of these specific factors
identified in 3D models can be generalized in 2D motion
analyses that are more cost-effective to the clinical environ-
ment. Relative presence of trunk instability,38,39 knee valgus
angle,40 and knee flexion angle,40 and knee excursion in the

Fig. 1 (Top row) From left to right depicts three-dimensional (3D) motion capture models at the minimum center of gravity for a drop vertical
jump performed in vivo within a 3D motion analysis laboratory, within the tracking software used to process 3D positional data from the in vivo
markers, and within the musculoskeletal modeling software used to process 3D kinematic and kinetic biomechanics from the positional data and
recorded ground reaction forces. Knee abduction torque from a drop vertical jump is commonly used to assess anterior cruciate ligament injury
risk in 3Dmotion analyses.26,75 (Bottom row) Progression of a tuck jump task during two-dimensional (2D) motion analysis. The tuck jump task has
been demonstrated as a clinician friendly, 2D assessment that can be used to identify high-risk mechanics and provide direction for neuromuscular
intervention.44
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frontal plane41 can be assessed in 2D capture. While not as
precise as 3D analyses, these 2D generalizations have effec-
tively been used to adapt biomechanical nommograms that
identify athletes within an athletic cohort who are predis-
posed to ACL injury risk.40–44

As previously stated, the intent behind the identification of
high-risk biomechanical behaviors and the athletes that
display them is to treat and prevent ACL injuries before
they occur. It has been repeatedly demonstrated that prophy-
lactic neuromuscular interventions can have a positive influ-
ence on the reduction of ACL injuries within an athletic
population.18,45–50 Neuromuscular training (NMT) is effec-
tive in reducing the magnitude of knee abduction moments
generated by athletes during the performance of athletic
tasks.51–54 As these frontal plane torques are directly associ-
ated with ACL injury,26 it is likely that decreasing their
magnitudes is in part responsible for the overall reduction
in injury incidence following NMT. Furthermore, NMT has
been demonstrated to have a greater biomechanical effect on
high-injury risk athletic populations than medium- or low-
risk cohorts.52 Accordingly, the classification of athletes in
injury risk levels and definition of the underlying mecha-
nisms that lead to these levels of riskmay be vital tomaximize
the future efficacy of ACL injury prevention.

In this clinical prediction commentary, we synthesize
information related to howmotion capture analyses contrib-
ute to the identification of risk factors that may predict
relative injury risk within a population. We argue that an
athlete’s relative ACL injury risk is dependent on which
systems of control an athlete can effectively employ to
restrain the knee joint during athletic tasks. In thefirst section
of this commentary, we define the systems of control avail-
able at the knee and identify differences in mechanical out-
comes between effective and less effective systems. In the
second section,we identify the divisions of relative ACL injury
risk based on knee abduction moment and justify our stated
arguments. In subsequent sections, we address how robust
the classifications of injury risk may be and examine the
effectiveness of incorporation of biofeedback techniqueswith
motion capture analysis to reduce relative injury risk within
an athlete and an athletic population.

Knee Joint Restraints

Motion at the knee is constrained by a series of active and
passive restraints that work in conjunction to stabilize the
articulating structures when forces and perturbations are
applied during an athletic maneuver. Active restraints refer-
ence the musculature surrounding the joint and the neuro-
muscular control mechanisms used to activate this
musculature, specifically, the proprioceptive, kinesthetic,
visual, vestibular, and motor command systems.55 With
respect to the ACL, it has been hypothesized that ligament
injury risk is related to measureable and modifiable deficits
within these neuromuscular control mechanisms that influ-
ence muscle strength, power, and activation and, ultimately,
knee joint and ACL loads.26,56–58 Relative to muscle mechan-
ics, quadriceps activation has traditionally been seen as

antagonist to the ACL, adding strain, whereas, hamstrings
activation has been agonist, providing protection.59 Accord-
ingly, a poor quadriceps-hamstrings activation ratio can lead
to increased knee extension during landing and excess
anterior tibial translation, both of which increase ACL
strain.60–62 This preferential activation of knee extensors
over knee flexors to stabilize the knee during motion tasks is
termed quad dominance.63 Quadriceps-dominant traits can
lead to lower flexion angles upon landing that indicate less
time and movement to absorb the impulse forces generated
from landing and lead to greater joint force generation as a
result of this more extended position.55,62,64 A second deficit
within active knee restraints is leg dominance, where the
imbalance between muscular strength and recruitment on
opposing limbs lead to contralateral asymmetries.63 Kinetic
and kinematic analyses have shown this type of deficit to be
especially prevalent in female athletes, as they demonstrate
greater limb asymmetries, especially in regard to frontal
plane kinematics, than their male counterparts.57,65 Further-
more, motion analysis investigations have revealed that
contralateral asymmetries are greater following ACLR; and
therefore, may be related to the increased likelihood of
secondary or contralateral ACL rupture that exists within
the ACL-injured population following return to sport.66 The
common outcome brought on by the variety of neuromuscu-
lar control deficits documented here is that the active knee
stabilizers are unable to restrain the joint from articulating
into dynamic valgus rapid deceleration tasks, a trait that is
able predict ACL injury risk with 78% sensitivity and 73%
specificity.26

Passive knee restraints reference the ligaments, bony
structures, and generalized laxity within the joint that con-
tribute to the mechanical constraint of motion in the absence
of a neuromuscular response. Excessive employment of the
passive restraints in the knee can be related to insufficient
control of the active restraints that results in a ligament
dominant condition.63,67 Ligament dominance refers to de-
creased medial/lateral muscle control that leads to high
valgus torque and vertical ground reaction forces.63,66,68,69

In this condition, the ground reaction forces dictate joint
movement direction rather than the musculature and allow
for substantial loading of the ligamentous structures within
the knee.63,67 In addition, increased knee laxity, especially in
the anteroposterior degree of freedom, leads to increased
tibial translation, which leads to additional loading of the
knee ligaments as theymechanicallywork to resist this excess
motion. Morphologic changes that can relate to ACL injury
risk include tibial plateau slope70 and femoral notch width.71

As posterior tibial slope increases, the femur is more likely to
slide posteriorly on the tibial plateau, which places mechani-
cal demand on the ACL as the ligament resists up to 85% of
anterior tibial translational force in the knee.70,72,73 As the
femoral notch width decreases, the likelihood of ACL im-
pingement increases, which adds strain to the ligament.74

Unlike active restraints, these passive knee restraints cannot
be altered by intervention training and are thus referred to as
nonmodifiable risk factors as changes require invasive surgi-
cal intervention.
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Relative Injury Risk

Traditionally, the relative level of ACL injury risk displayed
by an athlete has been determined by the magnitude of
knee abduction moment he or she generates during drop
landing (►Fig. 2).26,40 In a cohort of 205 female athletes
who underwent 3Dmotion analysis andwere prospectively
monitored for subsequent ACL injury, it was discovered that
those athletes whowent on to injury exhibited greater knee
abduction moments than did healthy controls.26 The mean
peak knee abduction torque for injury patients was 21.74
N�m.Within this population, it was later assessed that peak
knee abductionmoments above 25.3 N�m increased risk for
subsequent ACL injury from 0.4 to 6.8%; thus, this was
established as the cutoff threshold for the classification of
high injury risk athletes.75 Similarly, during 3D motion
analysis of the same drop vertical jump task, a separate
patient population with patellofemoral pain was found to
generate greater peak knee abduction moments on their
uninvolved limb than did healthy controls.76 Within these
two population cohorts that were examined separately for
ACL injury and patellofemoral pain, the incidence of patel-
lofemoral pain was found to be 2.2 times greater than ACL
injury when normalized for athlete seasons.75 This discrep-
ancy in incidence indicated that a tertiary level of injury
risk may be present. Indeed, a second investigation based
on the same 3D motion analysis techniques that defined
high injury risk athletes found that probability of patello-
femoral pain occurrence increased dramatically in athletes
with peak knee abduction moments greater than 15.4
N�m.75,77 This threshold predicted knee abduction load
associated with increased patellofemoral pain risk with
92% sensitivity and 74% specificity and, as such, was deter-
mined to represent a medium injury risk classification
among athletes.75,77

As noted previously, the data from these 3D motion analy-
ses were disseminated into algorithms that could predict both
ACL injury40–42,78 and patellofemoral pain.77 The purpose of
these 2D injury risk nommograms was to create clinically
relevant tools that could quickly, accurately, and cost-efficient-
ly categorize athletes into relative injury risk groups based on
these peak knee abduction moment divisions. While 3D
motion analysis is an effective laboratory tool, these systems
are cost prohibitive and involve intensive data analysis, which
makes them inaccessible tomost clinical environments.40,79 To
this effect, the selected clinically based nomograms involve
minimal investment (two video cameras and laptop),40,79 can
be quickly and reliably assessed by a trained clinician,80 and
exhibit high sensitivity and moderate specificity in the classi-
fication of relative risk for ACL injury (84 and 67%, respectively)
or patellofemoral pain (92 and 46%, respectively).77,81

Despite having equivalent fall heights, 3D motion capture
analysis of the first and second landings of a drop vertical
jump (DVJ) has revealed several differences in kinetic and
kinematic performance.82 Because of these differences, the
first landing may be more predisposed to exhibit larger
frontal plane moments than the second. As such the two
landing phases exhibit a potential shift in injury risk classifi-
cation. A population of 239 adolescent female athletes un-
derwent 3D motion analysis as they completed both the first
and second landings of a DVJ, as was described previously in
the literature.82–84 Of these athletes, both landings were
successfully captured on 206 subjects. Peak knee abduction
moments calculated from the motion capture model were
used to classify these athletes into relative injury risk groups
as specified earlier. It was found that during the first landing
57.2% were classified as low ACL injury risk, 21.8% were
medium risk, and 20.9% were high risk; while during the
second landing 66.5% were low risk, 21.4% weremedium risk,
and 12.1%were high risk (►Fig. 3). This cohort of athletes was

Fig. 2 Peak knee abduction moments generated by two prospectively analyzed cohorts of adolescent female athletes during a DVJ task. The first
cohort (red) was used to determine the magnitude of knee abduction torque that would predict ACL injury risk,26 while the second cohort (black)
was used to determine the magnitude of knee abduction torque that would predict patellofemoral pain risk.75,77,78 The horizontal lines designate
relative injury risk divisions for the medium (solid line) and high (dashed line) risk groups. (Reprinted with permission from Myer et al75). ACL,
anterior cruciate ligament; CTRL, Control; PFP, patellofemoral pain.
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previously shown to generate a slightly larger mean peak
frontal plane knee torque during the first landing of a drop
vertical jump than during the second.82 The frequency of high-
risk classifications between landings presented here corre-
sponded with that finding; however, the relative infrequency
of high-risk kinetics during the second landing may indicate
that it is more selective in diagnosis. Of the athletes who
expressed high-risk knee abduction torque during the first
landing, 37.2% continued to demonstrate torque magnitudes
indicative of high-risk biomechanics during the second land-
ing, while 30.2 and 32.6% exhibited medium and low risk,
respectively (►Fig. 4). Conversely, 64.0% of athletes who
exhibited “high-risk” torques in the second landing were
also classified as high risk in the first landing. Kinematic and
kinetic variabilitywithin theperformance of an athletic task, as
captured by motion analysis systems, has been previously
documented.80,85 For peak knee abduction moments within
a session, the interclass correlation coefficient was 0.931,

which represents excellent reliability and consistent results.85

Accordingly, it would be expected that subjects would steadily
demonstrate the same level of ACL injury risk when landing
from a jump. However, the classification consistency of this
data did not match the reported reliability. It is possible to
generate high-risk knee abduction torques with poor control
over either the dynamic or passive knee restraints, but perhaps
athletes who consistently exhibit high-risk frontal plane tor-
ques between landings represent subjects who express poor
control over both mechanisms of knee restraint.

The authors propose that athleteswho continually express
relatively high levels of injury risk during rapid deceleration
tasks have poor control over both their active and passive
mechanisms of knee restraint. Those athletes who express
medium injury risk, or fluctuate between groups, may only
express poor control over one set of knee restraints, either the
active or passive systems. During the performance of athletic
tasks, athletes generate large impulse forces at the knee that

Fig. 3 Depiction of risk category divisions during the first (circles) and second (stars) landing of a DVJ within the 206 adolescent female athletes
examined in this article. Peak abduction torques below the patellofemoral risk line designate the medium injury risk classification, while values
below the anterior cruciate ligament risk line designate the high injury risk classification.

Fig. 4 Pie chart depiction of anterior cruciate ligament injury risk classifications for 206 adolescent female athletes during the first and second
landing of a DVJ. Lines demonstrate the number of high-risk athletes that changed injury risk classifications between landings. Only 16 athletes
(7.8%) were classified as high risk in both landings based on their peak knee abduction moment.
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are primarily absorbed over time as the musculature flexes
the joint through a range of motion.30,55 When muscular
strength or activation proves insufficient to properly flex the
joint and restrain these impulse forces, the knee is forced into
frontal and transverse plane rotations.57,86 As the muscula-
ture at the knee primarily functions in the sagittal plane, such
perturbations may require passive structures to restrain the
joint from collapse.57,86–88 Therefore, as relative injury risk
levels are classified by peak knee abduction torque generated
during landing,26 athletes who exhibit high knee abduction
torques during drop vertical jumps have, by definition, iden-
tified themselves to have poor neuromuscular control. This is
because their musculature failed to constrain the resultant
ground reaction forces within the sagittal plane of the
knee.57,86 However, not all athletes who express weak mus-
culature or poor hamstrings to quadriceps strength ratios
generate high knee abduction moments during landing.

The previously described 206 athletes who were success-
fully evaluated via 3D motion analysis during the first and
second landing of a drop vertical jump were also assessed for
hamstrings and quadriceps strength on a dynamometer using
previously published methods.89 Of 206 athletes, 117 were
found to have poor hamstrings-to-quadriceps strength ratios
(below 0.60 hamstrings-to-quadriceps peak strength at 300
degree/second)90; yet, within this subset, only 29 and 15 of
these athletes generated knee abduction torques greater than
25.3 N�m in the first and second landing, respectively. Fur-
thermore, as landing from a drop vertical jump generates
ground reaction force magnitudes up to 4.5 � bodyweight,84

if active knee restraints were the sole contributor to injury
risk classification, athletes with the lowest peak strength to
body mass ratio would be expected to almost entirely com-
prise the high injury risk group. However, of the 43 athletes
classified as high risk in the first landing, only 17 came from
athleteswhowere in the bottomhalf of strength to bodymass
ratios. This behavior indicated that well-developed passive
restraints within the knee may be able to compensate for
active restraint deficiencies. Furthermore, this implicated
that consistent high-risk torque generation may require
poor control in both active and passive knee restraint mech-
anisms. In addition tomotion capture and strengthmeasures,
the same cohort of adolescent female athletes underwent
arthrometry evaluations for joint laxity using previously
published methods.91 Again, increased knee laxity alone
was not sufficient to predict knee injury risk as only 21 of
43 high-risk subjects exhibited relatively high knee laxity
values (greater than 10.22 mm anterior translation under
134 N of anterior force as this was the mean laxity value
reported in the contralateral limbs of patients with ACL
injury).87,88 Of the 206 subjects, 43 exhibited each poor
hamstrings-to-quadriceps ratio, lower peak-strength-to-
body-mass ratio, and high joint laxity.91,92 Between both
landings, 11 of 43 (25.6%) subjects in this subset also ex-
hibited high knee abduction moments during landing. While,
far fromprecise in their indication of risk, the presence of high
peak knee abduction torques in these athletes with poor
active and passive knee restraints was greater than it was in
the overall cohort. These data support that underdeveloped

passive restraints contribute to overall injury risk and that a
consistent high injury risk classification may be indicative of
poor coordination over both systems of knee stabilization.

Neuromuscular Interventions

Prophylactic neuromuscular interventions have been shown
to effectively reduce ACL injury incidence over time through
successful alteration of negative biomechanical tendencies
that contribute to injury risk.18,45–50 Specifically, a review of
interventions discovered that NMT produces a relative risk
reduction of 73.4% for noncontact ACL injury in female
athletes and that these interventions prevent approximately
one injury per every 108 individuals that participate in
training.47 It was also found that those neuromuscular inter-
ventions that incorporated multiple types of training, each
strengthening, plyometric, and balance exercises, were more
effective in the reduction of injury rates than interventions
focused on a single training type.47 An additional mechanism
investigators have recently begun to incorporate into inter-
vention training is biofeedback. Biofeedback utilizes motion
analysis techniques to assess deficiencies in dynamic task
performance and immediately reinforces themwith visual or
audible cues that indicate directly to the patient how he or
she might optimize movement patterns. In clinical settings,
biofeedback has primarily been used to treat gait abnormali-
ties in both pediatric and adult populations.93 Furthermore,
investigation has found that biofeedback can instantly reduce
relative injury risk for those athletes that exhibit high-risk
mechanics.52 Motion analysis investigations have demon-
strated that feedback will correct for pain and deficits in
gait with moderate-to-large treatment effect on adult pa-
tients.93 During jump landing, feedback has been shown to
effectively reduce jump landing forces,94 reduce trunk sway,95

and reduce knee hyperextension.96 Furthermore, real-time
kinetic-focused biofeedback implemented in conjunction
with 3D motion analysis during a squat activity has been
found to immediately reduce peak knee abduction moment
during a drop vertical jump, the primary indicator of ACL
injury risk, by 32.8% in adolescent female athletes.97 As
previously noted, increased magnitudes of each of these
factors has been associated with ACL injury risk; therefore,
reduction through biofeedback exemplifies the potential of
this tool to further limit the incidence of ACL rupture. Future
implementations of biofeedback could be applied in conjunc-
tion with the previously documented injury risk nomograms
based on 2D motion analysis as a clinically relevant mecha-
nism for the diagnosis and immediate initiation of corrective
treatment for athletes who exhibit high-risk tendencies.

Summary

Motion-capture analyses havemade significant contributions
to the identification of factors that contribute to ACL injury
risk. The classification of relative injury risk via 2D and 3D
motion analysis techniques plays an essential role for both
researchers and clinicians whowish to intervene and prevent
ACL in athletic populations. There is strong evidence to
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indicate that athletes who consistently classify as high-risk
loaders during landing suffer from combined joint stability
deficits in both their active and passive restraints at the knee
joint. Implementation of prophylactic neuromuscular inter-
ventions has been shown to effectively compensate for some
of the deficiencies that results from poor control of the active
knee stabilizers and, in turn, reduce the incidence of ACL
injuries. With continued development of these interventions,
such as through the incorporation of motion analysis–based
biofeedback, researchers, and clinicians can continue to im-
prove the efficacy of ACL injury prevention initiatives.
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