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The Role of Iodine and Selenium in Autoimmune 
Thyroiditis

focus will be an update of the molecular mecha-
nisms involved in the complex pathogenetic 
interactions of AIT.

Iodine
▼
Environmental iodine deficiency, long a cause of 
iodine deficiency disorders round the world, has 
been substantially reduced thanks to the imple-
mentation of programs of mandatory food iodine 
fortification in numerous countries. However, 
while this endeavor has led to the virtual eradi-
cation in these regions of severe iodine defi-
ciency, it has in parallel resulted in an increase in 
the prevalence of AIT. Meanwhile, it has recently 
been noted in various parts of the world that a 
decrease in iodine intake results in a lowering of 
the incidence of AIT [10].

Introduction
▼
Autoimmune thyroiditis (AIT), including Hashi-
moto Thyroiditis (HT) which is the most common 
form, is an organ-specific disorder characterized 
by a profound interaction between genetic and 
environmental factors [1, 2]. The incidence of AIT 
is on the rise in many parts of the world. It exhib-
its a prevalence of about 12 % depending on age 
(more frequent in postmenopausal women), 
gender (10 times more frequent in women) and 
race, being more common in Caucasians than in 
Blacks [3].
For a wide-ranging and analytic presentation of 
the environmental factors and their interaction 
with genetics, the reader is referred to several 
recent overviews [4–9]. This review discusses the 
pivotal role that both iodine and selenium may 
play in the development of AIT, while the main 
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Abstract
▼
Iodine and selenium (Se) are both essential ele-
ments to thyroid hormone economy, while they 
represent key players in the development of 
autoimmune thyroiditis.
Chronic high iodine intake has been associated in 
various studies with increased frequency of auto-
immune thyroiditis. In susceptible individuals, 
iodine excess increases intra-thyroid infiltrating 
Th17 cells and inhibits T regulatory (TREG) cells 
development, while it triggers an abnormal 
expression of tumor necrosis factor-related apop-
tosis-inducing ligand (TRAIL) in thyrocytes, thus 
inducing apoptosis and parenchymal destruction. 
As was shown in a mouse model, high iodine sup-
ply leads to changes in the immunogenicity of the 
thyroglobulin molecule, upregulation of vascular 
intercellular adhesion molecule-1 (ICAM-1), and 
reactive oxygen species (ROS) generation in the 
thyrocytes. Serum Se levels were found decreased 

in Hashimoto thyroiditis and especially in Graves’ 
disease as well as in thyroid-associated ophthal-
mopathy patients, the levels being related to the 
pathogenesis and outcome. Selenium is strongly 
involved, via the variable selenoproteins, in anti-
oxidant, redox, and anti-inflammatory processes. 
Selenium enhances CD4 + /CD25 FOXP3 and T reg-
ulatory cells activity while suppressing cytokine 
secretion, thus preventing apoptosis of the folli-
cular cells and providing protection from thy-
roiditis. Selenium supplementation may be 
useful in autoimmune thyroid diseases, though, 
while usually well-tolerated, it should not be uni-
versally recommended, and it is also likely to be 
helpful for those with low Se status and autoim-
munity. Broadly speaking, the achievement and 
maintenance of “selenostasis” as well as adequate 
urinary iodine excretion are mandatory to con-
trol disease, while, putatively, they may addition-
ally be critical to preventing disease.

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.

http://dx.doi.org/  10.1055/s-0035-1559631  
http://dx.doi.org/  10.1055/s-0035-1559631  
mailto:ledunt@otenet.gr


722

Duntas LH. Iodine and Selenium in AIT …  Horm Metab Res 2015; 47: 721–726

Review

The effect of a cautious iodization program aiming to adjust 
iodine intake to a low recommended level was evaluated in 2 
identical cross-sectional population studies before and 4–5 
years after mandatory iodine fortification of salt implemented in 
Denmark [11]. An increase in the prevalence of both thyroid per-
oxidase antibody (TPOAB) and thyroglobulin antibody (TgAB) 
was observed 4–5 years after initiation of the program mostly in 
young women and at low concentrations of antibodies [11].
Excessive iodine intake for a period of 5 years in a population-
based study with 1 085 participants in Sao Paulo resulted in 
excessive median urinary iodine excretion (MUIE) above 300 μg/l 
and 400 μg/l, in 45.6 and 14.1 %, of the participants, respectively 
[12]. Additionally, an increase in the prevalence of AIT to 17 % 
has been reported, 8 % of the individuals being detected with 
hypothyroidism, while incidence of hyperthyroidism amounted 
to 3.3 % of the study population.
More crucially, excessive iodine intake (MUIE > 300 μg/l) could 
well become a serious public health concern because of its abil-
ity to substantially increase subclinical hypothyroidism and AIT 
rates [13]. This was recently documented in 2 Chinese commu-
nities manifesting both high (261 μg/l) and normal (145 μg/l) 
iodine intake levels [14], as well as in the Pescopagano survey in 
Italy. In the latter study conducted in a southern Italian village, 
1 411 people were examined in 1 955 and 1 148 in 2010 follow-
ing the introduction of the salt iodization program [15]. The 
prevalence of hypothyroidism was found to be higher in 2010 vs. 
1995 (5.0 vs. 2.8 %, p < 0.005), chiefly due to an increased rate of 
subclinical hypothyroidism (SCH) in subjects younger than 15 
years old. In parallel, TPOAB levels (19.5 vs. 12.6 %; p < 0.0001) 
and HT rates (14.5 vs. 3.5 %; p < 0.0001) were higher in 2010 than 
in 1995 [15].
It is therefore evident that even small differences in iodine intake 
can result in quite large differences in prevalence of thyroid dis-
eases, given that iodine intakes both slightly below and above 
the recommended levels have been shown to be associated with 
an increase in disease risk [16]. Based on the above data, the best 
approach would be adherence to a narrow iodine intake interval 
so that a given population may achieve prevention of IDD and 
minimalization of the risk of autoimmune thyroid disease.
In various animal models, such as the BioBreeding/Worcester 
(BB/W) rat [17] and especially the nonobese diabetic (NOD) 
mouse [18], an autoimmune thyroiditis-prone animal model, 
the administration of iodine significantly enhanced and acceler-
ated, in a dose-dependent manner, the incidence of AIT and thus 
corroborated the results that excess iodine is associated with 
thyroid autoimmunity.

Iodine and Autoimmune Thyroiditis: Mechanisms of 
Induction
▼
The importance of Tg, which was the first thyroid-specific sus-
ceptibility gene to be identified, challenged by iodine in the 
induction of AIT has been well known since 1956 [19]. In 1992 it 
was demonstrated that a high iodine diet in the BB/W rat, which 
results in spontaneous development of type 1 diabetes mellitus 
and lymphocytic thyroiditis, increases significantly the inci-
dence of thyroiditis, while a low iodine diet has the opposite 
effect [20]. The authors also observed that the extent of Tg iodi-
nation is responsible for inducing lymphocytic thyroiditis in rat. 
Since then, it has been established that iodine triggers autoim-

munity by inducing the generation of “cryptic peptides” within 
the Tg molecule, which in turn encompass “cryptic epitopes” on 
Tg with immunostimulatory properties [21]. In this line of evi-
dence, it was demonstrated that TgABs are directed to the 
epitope B of Tg more frequently in iodized salt consumers than 
in nonconsumers [22]. Moreover, while autoreactive T cells may 
proliferate in response to normal Tg, no reaction was seen in 
non-iodinated Tg [23, 24]. Iodine excess upregulates the expres-
sion of vascular intercellular adhesion molecule-1 (ICAM-1) on 
the surface of cell types including thyrocytes [25]. During the 
process of iodine organification in the thyroid, the generated 
reactive oxygen species (ROS), and especially hydrogen peroxide 
(H2O2), can influence ICAM-1 expression and activate its tran-
scription synergistically with iodine via the MAPK pathway 
[26, 27].
In HT, an immunologic reaction is triggered in thyrocytes 
induced by the production of inflammatory cytokines, particu-
larly interferon-γ (IFN-γ), from T helper (Th)1 type lymphocytes 
[28]. It has thus been hypothesized that IFN-γ induces MHC class 
II expression on hemopoietic and epithelial cells and activates 
macrophages and ICAM-1, leading to leukocyte recruitment to 
the site of inflammation [29]. This postulated promotion of 
autoimmune disease activity by IFN-γ is, however, till now con-
troversial, since it was shown that IFN-γ may possess disease-
suppressing activities [30]. NOD.H-2h4 transgenic mice, which 
had serum IFN-γ levels similar to wild-type mice, showed 
upregulation of MHC class II on thyrocytes but failed to develop 
spontaneous thyroiditis. Immunization with murine thyroglob-
ulin resulted in milder disease and decreased frequency of acti-
vated CD4 +  lymphocytes in the cervical lymph nodes [31]. The 
latter suppressive effect was confirmed, as blockade of systemic 
IFN-γ enhanced disease activity suggesting a local disease-limit-
ing role of IFN-γ in autoimmune thyroiditis. Potential mecha-
nisms for this activity might be a decrease of the amount of 
thyroid antigens available for uptake by thyroid-resident anti-
gen presenting cells (APCs), as well as the induction of regula-
tory proteins, which are members of the suppressor of the 
cytokine signaling (SOCS) family, particularly SOCS-1, that alle-
viate or terminate immunostimulatory signals [32].
On the other hand, IFN-γ induces protein 10 (IP-10), which was 
identified as a chemokine exerting its function through binding 
to chemokine (C-X-C motif) receptor 3 (CXCR3) [33]. IP-10 and 
its receptor, CXCR3, appear to contribute to the pathogenesis of 
various organ-specific autoimmune diseases such as HT and 
Graves’ disease (GD). It has been suggested that IP-10 levels 
might be a marker of the severity of the autoimmune process, as 
they were reported significantly higher in patients with a hypo-
echoic ultrasonographic pattern, which is a sign of a more severe 
lymphomonocytic infiltration in patients with thyroiditis [33]. 
These results are supported by an experimental study showing 
that high iodine intake in rats was associated with increased 
CD4( + ) T cells and serum IP-10, indicating that high iodine con-
sumption aggravates the inflammatory reaction in the thyroid 
by increasing serum IP-10 levels after induction of AIT with 
bovine thyroglobulin [34].
Other studies in NOD.H-2h4 mice have revealed a major role of 
Th17 cells in iodine-excess-induced AIT, given that they are 
capable of promoting an inflammatory reaction, which is nega-
tively regulated by Th1, T helper type 2 (Th2), and regulatory T 
(TREG) cells [35,36]. Thus, high iodine intake facilitates the pro-
duction of Th17 cells from T cells and inhibits the development 
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of TREG cells. Interestingly, the increased concentration of 
serum IL-17 was inversely correlated with patients’ residual thy-
roid function, while the expressed intra-thyroid IL-17 was cor-
related with the degree of local fibrosis [36]. The increased 
Th17:Th10 ratio that was found in HT patients after stimulation 
with thyroid specific self-antigens, together with an elevated 
baseline production of interleukin-6 (IL-6), of tumor growth 
factor-β1 (TGF-β1) and of mRNA encoding forkhead/winged 
helix transcription factor p3 missing exon 2 (FOXP3Δ2), may 
contribute to the skewing towards Th17-cell responses in HT 
[36]. Furthermore, the expression of signal transducer and acti-
vator of transcription 3 (STAT3) was much higher, while the 
expression of forkhead/winged helix transcription factor p3 
(FOXP3) was seen to be significantly lower and the proportion of 
Th17 cells much larger [37] ( ●▶  Fig. 1). Here, emphasis should be 
placed on the key role of the FOXP3 gene in the development of 
TREG cells, in view of the fact that mutations in the FOXP3 gene 
cause severe systemic autoimmune diseases in humans and in 
mice, while polymorphisms of the FOXP3 gene may alter FOXP3 
function and/or expression and drive the genetic susceptibility 
to AITD [37].

Elevated iodine supplementation (315 μg and 615 μg daily, 
respectively) in transgenic antibody-devoid mice, TAZ10, which 
are immunologically prone to AIT, alters the immune cell profile 
[CD8+ and TREG cells, natural killer (NK) cells] and cytokine pro-
duction, without affecting disease progression [38]. In contrast, 
enhanced iodide intake in NOD.H2(h4) mice accelerates the inci-
dence and severity of spontaneous autoimmune thyroiditis, 
most probably via apoptosis of thyrocytes by CD4 and CD8 T 
cells and subsequently disruption of the immunoregulatory 
mechanisms [39]. A number of apoptosis signaling pathways, 
including Fas ligand and tumor necrosis factor (TNF)-related 
apoptosis-inducing ligand (TRAIL), are thought to be implicated 
in destructive thyroiditis. It is thus probable that excessive 
iodine induces TRAIL abnormal expression in the thyroid, pro-
motes follicular cells apoptosis, and mediates thyroid destruc-
tion [40].

Selenium and Autoimmune Thyroiditis
▼
In organisms, selenium either exists as low-molecular weight 
compounds, such as selenite, selenomethionine, methylselenol 
or selenomethylselenocysteine, or is assimilated as selenocyst-
eine (amino acid; Sec) into selenium-containing proteins (sele-
noproteins). The thyroid contains more Se g/tissue than any 
other organ. Selenium is essential for the deiodination process of 
thyroxine by deiodinases (DIOs), and for the degradation of 
excessive generation of H2O2, via glutathione peroxidases (GPXs) 
and thioredoxin reductase (TRX) [41, 42]. Therefore, many stud-
ies have been conducted in AIT patients in several countries 
with variable Se content in the soil with the aim of examining 
the effects of Se administration on the AIT markers [43]. Most of 
the studies, which applied organic selenium in the form of sele-
nomethionine, showed a decrease of the TPOAB, while several 
other studies, using the inorganic form selenite, did not docu-
ment any effect on the thyroid antibodies as compared to pla-
cebo. Two meta-analyses have confirmed a positive effect of Se 
on TPOAB and improvement of mood in HT [44, 45], while 
another meta-analysis in the Cochrane library concluded that 
the evidence to support or refute the efficacy of selenium sup-
plementation in patients with HT is incomplete [46]. In a very 
recent double-blind, randomized, placebo-controlled study 
including 230 women with singleton pregnancies, it was shown 
that low-dose Se (60 μg/day) supplementation did not affect 
TPOAB but tended to change thyroid function, by decreasing TSH 
and FT4, in thyroid antibody positive patients [47]. The diver-
gent results of the various studies may be due to the inhomoge-
neity of the groups of patients as well as to the variability of the 
basal Se and iodine state, the duration of the study time and the 
Se compounds applied [48].
Serum Se levels have been reported slightly lower in patients 
with AIT than in controls in a study performed in lower Austria 
[49]. Also, in another study designed in Denmark, patients with 
newly diagnosed AIT, especially GD, had significantly lower 
serum Se concentrations compared with random controls, indi-
cating a potential link between inadequate selenium supply and 
overt autoimmune thyroid disease, especially GD [50].
In the same line of evidence, serum Se levels were found low, as 
compared to controls, in HT and especially in GD patients, while 
high Se levels ( > 120 μg/l) were associated with remission and 
better outcome [51]. Moreover, serum Se levels were lower in 
patients with thyroid associated orbitopathy (TAO) as compared 

Fig. 1  High iodine intake may in susceptible individuals lead to an 
increased expression of ICAM-1 on thyroidal follicle cells, induce T helper 
cells to differentiate towards T helper 1 (Th1), decrease CD4 + /CD + 25, 
FOXP3 and TREG, increase cytokine secretion, induce apoptosis via abnor-
mal TRAIL expression and mediate thyroid destruction. ICAM: Intracellular 
adhesion molecule; TRAIL: Tumor necrosis factor (TNF) related apoptosis-
inducing ligand (TRAIL); FOXP3: Forkhead/winged helix transcription 
factor p3 (FOXP3). (Color figure available online only).
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with GD in an Australian study population with marginal sele-
nium status [52]. These findings underscore the association of Se 
deficiency and thyroid autoimmunity and strongly indicate that 
low Se levels may reflect an increased risk factor for TAO in 
patients with Graves’ disease. Se supplementation in GD patients 
with mild TAO statistically significantly improved ocular involve-
ment and Quality of Life, while it slowed disease progression fol-
lowing 3 and 6 months treatment [53].
These results thus point to the possibility that patients might 
benefit from an improvement in their Se status, both as a means 
of reducing the individual autoimmunity risk as well as to rem-
edy a Se deficiency, which often develops during the course of 
illness.

Mechanisms of Selenium Action
▼
Selenium has variably been linked to thyroid autoimmunity. 
Besides the regulatory role that Se possesses in the deiodination 
of thyroid hormones, being a central constitutional element of 
the DIOs, Se neutralizes, via GPX1 and GPX3, the diffusion and 
activity of overproduced H2O2 and thus, it conserves the integ-
rity of the thyrocytes [54, 55]. Accordingly, it was shown that by 
means of a conditional gene knockout strategy, ablation of Sec 
tRNA[Ser]Sec results in the loss of expression of the whole sele-
noprotein set, or selenoproteome, in both hepatocytes and T 
cells [56].
CD4 + T cells can differentiate into either Th1 or Th2 cells, based 
on the activation of a pro-Th1 or a pro-Th2 environment [57]. 
High dietary Se may trigger an oxidative burst in response to T 
cell receptor (TCR) stimulation [57]. It is known that Th0 and Th1 
clones may function as helper T cells, leading to production of 
autoantibodies against Tg and TPO [58]. TCR induces differentia-
tion of CD + T cells into FOXP3  + TREG cells, which might be influ-
enced by high dietary Se levels [59]. The reduction or functional 
abnormality of CD25 + CD4 +  TREG cells leads to the develop-
ment of autoimmune disease. It is notable that, as was demon-
strated in human leucocyte antigen DR3 (DRB1 * 0301) transgenic 
class II-knock-out nonobese diabetic mice, depletion of 
CD4 + CD25 + TREG cells prior to sodium iodide treatment 
induced destructive thyroiditis (68 %) and exacerbates serum 
anti-Tg antibodies [60]. In an experimental study, inorganic Se 
inhibited in a dose-dependent matter the expression of HDL-DR 
molecules by reducing the radical oxygen species (ROS) in cul-
tures of human thyrocytes exposed to IFN-γ [61]. Se supplemen-
tation in patients with AIT affects dose-dependently IL-2 and 
other cytokines variably involved in the pathogenesis of AIT [62] 
( ●▶  Fig. 2).
Selenium may indirectly inhibit TNF activation and cytokine 
release. It is noteworthy, that by increasing Se supplementation, 
receptor activator for nuclear factor-κB ligand (RANKL) that is 
related to TNF-α activation may be reduced [57]. In this line of 
evidence, in an experimental study investigating the effects of 
SeMet on proinflammatory cytokines release from monocyte 
and lymphocytes of patients with untreated HT, a significant 
inhibition of IFN-γ and IL-2 by SeMet was demonstrated, an 
effect that was potentiated when combined treatment with LT4 
and SeMet was applied [63]. Thus, Se exhibits directly and indi-
rectly anti-inflammatory and antioxidative actions, which have 
been variably revealed in studies on immune cells from humans 
and animals. In this connection, Se supplementation as selenite 
(50 μg/day or 100 μg/day) increased both GPX1 and GPX4 activ-

ity in lymphocytes from supplemented individuals compared to 
controls [63].
Macrophages, a class of myeloid leukocytes with phagocytic 
activity, detect the presence of signature molecules associated 
with microbial infection and tissue damage signaling properties 
[64]. An experimental study recently demonstrated that the 
enhanced release of H2O2 by macrophages after zymosan stimu-
lation could be directly attributable to loss of glutathione per-
oxidase (GSH-Px) activity, thus leading to reduced peroxide 
breakdown [65]. Moreover, the influence of a selenium-deficient 
diet in mice and rats has been studied via investigation into the 
GSH-Px and secretory activities of peritoneal macrophages, 
mitogenesis of spleen cells, and adjuvant arthritis. Macrophage 
GSH-Px activity was significantly reduced by 9 weeks on the 
selenium-deficient diet. Interestingly, this reduction was associ-
ated with enhanced macrophage H2O2 release following 
zymosan stimulation after 12 weeks on the diet, this accompa-
nied by a similar trend in chemiluminescence and reduced 
mitogenesis of spleen cell cultures to T and B cell mitogens after 
8 weeks on the diet [65].
Mouse macrophages treated with lipopolysaccharide (LPS) dem-
onstrated an increase in TXRND1 expression, while the mRNA or 
protein expression of other selenoproteins, including GPX 
enzymes, was less affected, suggesting a significant role of 
TXNRD1 in the regulation of redox status in macrophages [66].

Fig. 2  Increased Se intake induces, via activation of the T cell receptor 
(TCR), differentiation of CD4 + T cells into CD25 + Foxp3 + T regulatory cells 
(TREG). Adequate levels of Se intake do not affect T cells and T helper 
cells (Th0) vs. Th1 or Th2 differentiation. In contrast, Se deficiency, as 
an environmental factor, increases T-cell activation, while the T helper-1 
(Th1)/T helper-2 (Th2) ratio may shift to a Th1-type response, increasing 
such cytokines as IL-2, TNF-α, IFN-γ, thereby reducing CD25 + T regulatory 
cells (TREG) + Foxp3 and in parallel inhibiting an activation of dendritic 
cells and macrophages by Toll-like receptor (TLR) cells [57, 61]. TREG likely 
responds to different ligands for TLRs, thus the TLRs may exert different 
effects on TREG, depending on the degree of inflammation, resulting in 
more suppression or, in contrast, abrogation of suppression [68].  
(Color figure available online only).
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The incorporation of radiolabeled selenium into protein during 
LPS stimulation revealed TRXND1 as the only LPS-inducible 
selenoprotein in macrophages. In mice, macrophage-specific 
ablation of TRXND1 results in a drastic decrease in the expres-
sion of VSIG4, a B7 family protein known to suppress T cell acti-
vation [66]. These results suggest a link between selenium 
metabolism and immune signaling and identify TRXND1 as both 
a regulator and a regulated target in the macrophage gene 
expression network [66].
A significant association between the SEPS1–105 GA and AA gen-
otypes and HT was found in a study investigating the role of poly-
morphisms in the promoter region of selenoprotein S, and SEPS 
gene, in the risk for developing HT [67]. It is of interest that male 
patients with HT represent a 3.94 times increased risk for carry-
ing the A allele than women. This was the first study showing 
polymorphisms of selenoproteins associated with the risk of HT.
To conclude, this review underlines the significance of the 2 
essential elements, iodine and Se, for thyroid function and the 
fact that both excess and deficiency are intimately related with 
thyroid autoimmunity. It is thus apparent that dietary intake 
should imply maintenance of normal iodine and Se levels while 
avoiding either increased or diminished serum and/or urine 
excretion levels.
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