Synlett 2015; 26(17): 2442-2446
DOI: 10.1055/s-0035-1560179
letter
© Georg Thieme Verlag Stuttgart · New York

Amino Acid Salt Catalyzed Asymmetric Synthesis of 1,2-Diols with A Quaternary Carbon Center

Quanquan Wu
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, P. R. of China   Email: junjiang@wzu.edu.cn
,
Shulei Liu
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, P. R. of China   Email: junjiang@wzu.edu.cn
,
Fangyuan Wang
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, P. R. of China   Email: junjiang@wzu.edu.cn
,
Qingqing Li
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, P. R. of China   Email: junjiang@wzu.edu.cn
,
Kangli Cheng
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, P. R. of China   Email: junjiang@wzu.edu.cn
,
Juan Li
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, P. R. of China   Email: junjiang@wzu.edu.cn
,
Jun Jiang*
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, P. R. of China   Email: junjiang@wzu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 09 June 2015

Accepted after revision: 23 July 2015

Publication Date:
01 September 2015 (online)


Abstract

Enantioenriched 1,2-diols with a quaternary carbon center have great potential in the preparation of natural and biologically active compounds, but remain challenging synthetic targets which demand for both good diastereo- and enantioselectivity. As part of our continuous effort to explore the unique catalytic activities of amino acid salts in the asymmetric synthesis, herein, we wish to report an amino acid salt catalyzed direct aldol reaction between hydroxyacetone and α-keto e­sters, which afforded the 1,2-diols with a quaternary carbon center in high diastereo- and enantioselectivities.

Supporting Information

 
  • References and Notes

    • 1a Blaser HU. Chem. Rev. 1992; 92: 935

    • For a review on amino acid derived chiral oxazoline ligands in asymmetric catalysis, see:
    • 1b Hargaden GC, Guiry PJ. Chem. Rev. 2009; 109: 2505

    • For a review on amino acid derived amino alcohols as chiral auxiliaries in asymmetric synthesis, see:
    • 1c Ager DJ, Prakash I, Schaad DR. Chem. Rev. 1996; 96: 835

      For selected reviews, see:
    • 2a Jarvo ER, Miller SJ. Tetrahedron 2002; 58: 2481
    • 2b List B. Tetrahedron 2002; 58: 5573
    • 2c Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
    • 2d Pellissier H. Tetrahedron 2007; 63: 9267
    • 2e Xu L.-W, Lu Y. Org. Biomol. Chem. 2008; 6: 2047

      For a review, see:
    • 3a Mlynarski J, Paradowska J. Chem. Soc. Rev. 2008; 37: 1502

    • For selected examples, see:
    • 3b Darbre T, Machuqueiro M. Chem. Commun. 2003; 1090
    • 3c Fernandez-Lopez R, Kofoed J, Machuqueiro M, Darbre T. Eur. J. Org. Chem. 2005; 5268
    • 3d Kofoed J, Darbre T, Reymond JL. Chem. Commun. 2006; 1482
    • 3e Itoh S, Kitamura M, Yamada Y, Aoki S. Chem. Eur. J. 2009; 15: 10570
    • 3f Karmakar A, Maji T, Wittmann S, Reiser O. Chem. Eur. J. 2011; 17: 11024

    • For amino acid salts catalyzed Robinson annulation, see:
    • 3g Li P.-F, Yamamoto H. Chem. Commun. 2009; 5412
    • 4a Yamaguchi M, Shiraishi T, Hirama M. Angew. Chem., Int. Ed. Engl. 1993; 32: 1176
    • 4b Yamaguchi M, Shiraishi T, Hirama M. J. Org. Chem. 1996; 61: 3520
    • 4c Sato A, Yoshida M, Hara S. Chem. Commun. 2008; 6242
    • 4d Yoshida M, Narita M, Hirama K, Hara S. Tetrahedron Lett. 2009; 50: 7297
    • 4e Yoshida M, Sato A, Hara S. Org. Biomol. Chem. 2010; 8: 3031
    • 4f Yoshida M, Kitamikado N, Ikehara H, Hara S. J. Org. Chem. 2011; 76: 2305
    • 4g Yoshida M, Hirama K, Narita M, Hara S. Symmetry 2011; 3: 155
    • 4h Yoshida M, Narita M, Hara S. J. Org. Chem. 2011; 76: 8513
    • 4i Yoshida M, Masaki E, Ikehara H, Hara S. Org. Biomol. Chem. 2012; 10: 5289
    • 4j Xu K, Zhang S, Hu Y, Zha Z, Wang Z. Chem. Eur. J. 2013; 19: 3573
  • 5 Liu XH, Qin B, Zhou X, He B, Feng XM. J. Am. Chem. Soc. 2005; 127: 12224
    • 6a Liu H, Wu H, Luo Z, Shen J, Kang G, Liu B, Wan Z, Jiang J. Chem. Eur. J. 2012; 18: 11899
    • 6b Kang G, Wu Q, Liu M, Xu Q, Chen Z, Chen W, Luo Y, Ye W, Jiang J, Wu H. Adv. Synth. Catal. 2013; 355: 315
    • 6c Kang G, Luo Z, Liu C, Gao H, Wu Q, Wu H, Jiang J. Org. Lett. 2013; 15: 4738

      For selected examples, see:
    • 7a Notz W, List B. J. Am. Chem. Soc. 2000; 122: 7386
    • 7b Sakthivel K, Notz W, Bui T, Barbas CF. III. J. Am. Chem. Soc. 2001; 123: 5260
    • 7c Tang Z, Yang ZH, Cun LF, Gong LZ, Mi AQ, Jiang YZ. Org. Lett. 2004; 6: 2285
    • 7d Chen XH, Luo SW, Tang Z, Cun LF, Mi AQ, Jiang YZ, Gong LZ. Chem. Eur. J. 2007; 13: 689
    • 7e Xu XY, Wang YZ, Gong LZ. Org. Lett. 2007; 9: 4247
    • 7f Ramasastry SS. V, Zhang H, Tanaka F, Barbas CF. III. J. Am. Chem. Soc. 2007; 129: 288
    • 7g Luo S, Xu H, Li J, Zhang L, Cheng J.-P. J. Am. Chem. Soc. 2007; 129: 3074
    • 7h Luo S, Xu H, Zhang L, Li J, Cheng J.-P. Org. Lett. 2008; 10: 653
    • 7i Wu XY, Ma ZX, Ye ZQ, Qian S, Zhao G. Adv. Synth. Catal. 2009; 351: 158
    • 7j Li J, Luo S, Cheng J.-P. J. Org. Chem. 2009; 74: 1747
    • 7k Popik O, Pasternak-Suder M, Leśniak K, Jawiczuk M, Górecki M, Frelek J, Mlynarski J. J. Org. Chem. 2014; 79: 5728
    • 8a Kokotos CG. J. Org. Chem. 2012; 77: 1131
    • 8b Tanimura Y, Yasunaga K, Ishimaru K. Tetrahedron 2014; 70: 2816
    • 8c Guo W, Wei J, Liu Y, Li C. Tetrahedron 2014; 70: 6561

    • For selected example of asymmetric aldol reaction between protected hydroxyacetone and β,γ-unsaturated α-keto esters, see:
    • 8d Liu C, Dou X, Lu Y. Org. Lett. 2011; 13: 5248
  • 9 General Experimental Procedures for the Synthesis of 4 α-Keto esters 3 (0.2 mmol), catalyst 1h (20 mol%), and dry DMF (0.5 mL) were added to a tube. The mixture was stirred at –10 °C for 10 min, then hydroxyacetone (2, 1 mmol) was added dropwise, and the resulting mixture was stirred at this temperature for specific time until the reaction was completed. The reaction mixture was purified through flash column chromatography on a silica gel (eluent: PE–EtOAc = 10:1 to 5:1) to yield the targeting products. Data of Compound 4e C15H20O5, 43.3 mg, 77% yield, white solid, 92% ee, 25:1 dr; [α]D 21 –0.8 (c 0.33 in CH2Cl2). HPLC: DAICEL CHIRALCEL AD-H, 2-PrOH–n-hexane= 15:85, flow rate = 1.0 mL/min, λ = 254 nm, t R (minor) = 8.8 min; t R (major) = 10.6 min. 1HNMR (500 MHz, CDCl3): δ = 7.80–7.82 (m, 2 H), 7.40–7.43 (m, 2 H), 7.34–7.37 (m, 1 H), 4.88 (d, J = 5 Hz, 1 H), 4.08–4.10 (m, 2 H), 1.58 (s, 3 H), 1.50 (s, 9 H). 13CNMR (126 MHz, CDCl3): δ = 27.8, 27.9, 80.2, 81.9, 84.4, 126.3, 128.4, 128.5, 137.9, 171.4, 205.2. IR (KBr): γ = 3497, 2974, 2352, 1716, 1252, 1162, 844, 751, 735, 700, 650 cm–1. HRMS (Micromass GCT–MS ESI): m/z calcd for [C15H20NaO5]+: 303.1208; found: 303.1217.