Chiral γ-Lactams by Enantioselective Cyclopropane Functionalization

Significance: Cyclopropanes are important components of many biologically active molecules and they can be found fused to a pyrrolidine ring in certain medicines. The authors present a new approach to this ring system using an enantioselective C–H functionalization of a cyclopropane, enabled by a Pd/TADDOL catalyst. This work constitutes a notable advance in the field of C(sp^3)–C(sp^3) bond formation by C–H activation.

Comment: The reaction shows good functional group tolerance and allows the synthesis of a library of diverse cyclopropane-fused pyrrolidines in high yield and with high enantioselectivity. The substrates can be accessed in a sequence by using a variant of the Kulinkovich reaction. The authors also demonstrate that the catalyst can efficiently activate methyl C–H groups in other substrates.

Selected examples:

- **PMB N**
 - 89% yield
 - er = 95:5:4.5
- **PhMe, 70 °C**
 - 17 examples up to 99% yield
 - er up to 98:2

Additional examples:

- **Pd(dba)₂ (10 mol%)**
 - ligand (20 mol%)
 - AdCO₂H (10 mol%)
 - Cs₂CO₃ (1.5 equiv)
 - PhMe, 110 °C
 - 99% yield
 - er = 85:15

Mes = 2,4,6-Me₃C₆H₂

Ar = 3,5-t-BuC₆H₃

Category
- Metal-Catalyzed Asymmetric Synthesis and Stereoselective Reactions

Key words
- cyclopropanes
- C–H bond activation
- lactams