Synlett 2016; 27(04): 611-615
DOI: 10.1055/s-0035-1560907
letter
© Georg Thieme Verlag Stuttgart · New York

Exploration of Aryllithium-Derived Copper Reagents for Quaternary-Stereogenic-Center-Forming Allylic Substitution of γ,γ-Disubstituted Secondary Allylic Picolinates

Takuri Ozaki
Department of Bioengineering, Tokyo Institute of Technology, Box B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan   Email: ykobayas@bio.titech.ac.jp
,
Yuichi Kobayashi*
Department of Bioengineering, Tokyo Institute of Technology, Box B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan   Email: ykobayas@bio.titech.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 14 September 2015

Accepted after revision: 08 October 2015

Publication Date:
18 November 2015 (online)


Abstract

The allylic substitution of γ,γ-disubstituted secondary allylic picolinates (esters of 2-PyCO2H) with aryllithium-based copper reagents was carried out in order to construct quaternary carbons. Initially, 2-methyl-7-phenylhept-2-en-4-yl picolinate was reacted with phenyl copper reagents derived from phenyllithium with Cu(acac)2, Cu(OMe)2, CuBr·Me2S, and CuCN in 1–3:1 ratios in the presence of excess magnesium bromide. Although the SN2′ product with a quaternary carbon was formed, the regioselectivity was 90% at most. Instead, phenyllithium/copper(I) thiophene-2-carboxylate/magnesium bromide (Ph/Cu = 1.5–2:1, Mg/Li = >1) was found to produce >98% regioselectivity and sufficient reactivity. This system was successful with eight aryllithium based copper reagents possessing sterically congested, electron-donating, or electron-withdrawing substituents. The anti stereochemical course was established by using an enantiomerically enriched geranaldehyde-derived picolinate.

Supporting Information

 
  • References and Notes

    • 1a Das JP, Marek I. Chem. Commun. 2011; 47: 4593
    • 1b Shimizu M. Angew. Chem. Int. Ed. 2011; 50: 5998
    • 1c Hawner C, Alexakis A. Chem. Commun. 2010; 46: 7295
    • 1d Marek I, Sklute G. Chem. Commun. 2007; 1683
    • 1e Trost BM, Jiang C. Synthesis 2006; 369
    • 1f Christoffers J, Baro A. Angew. Chem. Int. Ed. 2003; 42: 1688
    • 1g Corey EJ, Guzman-Perez A. Angew. Chem. Int. Ed. 1998; 37: 388
    • 2a Fañanás-Mastral M, Vitale R, Pérez M, Feringa BL. Chem. Eur. J. 2015; 21: 4209
    • 2b Hojoh K, Shido Y, Ohmiya H, Sawamura M. Angew. Chem. Int. Ed. 2014; 53: 4954
    • 2c Magrez M, Guen YL, Baslé O, Crévisy C, Mauduit M. Chem. Eur. J. 2013; 19: 1199
    • 2d Fañanás-Mastral M, Pérez M, Bos PH, Rudolph A, Harutyunyan SR, Feringa BL. Angew. Chem. Int. Ed. 2012; 51: 1922
    • 2e Jung B, Hoveyda AH. J. Am. Chem. Soc. 2012; 134: 1490
    • 2f Gao F, Carr JL, Hoveyda AH. Angew. Chem. Int. Ed. 2012; 51: 6613
    • 2g Zhang P, Le H, Kyne RE, Morken JP. J. Am. Chem. Soc. 2011; 133: 9716
    • 2h Dabrowski JA, Gao F, Hoveyda AH. J. Am. Chem. Soc. 2011; 133: 4778
    • 2i Gao F, McGrath KP, Lee Y, Hoveyda AH. J. Am. Chem. Soc. 2010; 132: 14315
    • 2j Gao F, Lee Y, Mandai K, Hoveyda AH. Angew. Chem. Int. Ed. 2010; 49: 8370
    • 2k Lee Y, Li B, Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 11625
    • 2l Lee Y, Hoveyda AH. J. Am. Chem. Soc. 2006; 128: 15604
    • 2m Van Veldhuizen JJ, Campbell JE, Giudici RE, Hoveyda AH. J. Am. Chem. Soc. 2005; 127: 6877
    • 2n Okamoto S, Tominaga S, Saino N, Kase K, Shimoda K. J. Organomet. Chem. 2005; 690: 6001
    • 2o Murphy KE, Hoveyda AH. Org. Lett. 2005; 7: 1255
    • 2p Kacprzynski MA, Hoveyda AH. J. Am. Chem. Soc. 2004; 126: 10676
    • 2q Kimura M, Yamazaki T, Kitazume T, Kubota T. Org. Lett. 2004; 6: 4651
    • 2r Larsen AO, Leu W, Oberhuber CN, Campbell JE, Hoveyda AH. J. Am. Chem. Soc. 2004; 126: 11130
    • 2s Luchaco-Cullis CA, Mizutani H, Murphy KE, Hoveyda AH. Angew. Chem. Int. Ed. 2001; 40: 1456
    • 3a Soorukram D, Knochel P. Org. Lett. 2007; 9: 1021
    • 3b Breit B, Demel P, Grauer D, Studte C. Chem. Asian J. 2006; 1: 586
    • 3c Leuser H, Perrone S, Liron F, Kneisel FF, Knochel P. Angew. Chem. Int. Ed. 2005; 44: 4627
    • 3d Breit B, Demel P, Studte C. Angew. Chem. Int. Ed. 2004; 43: 3786
    • 3e Harrington-Frost N, Leuser H, Calaza MI, Kneisel FF, Knochel P. Org. Lett. 2003; 5: 2111
    • 3f Spino C, Beaulieu C. Angew. Chem. Int. Ed. 2000; 39: 1930
    • 3g Ibuka T, Akimoto N, Tanaka M, Nishii S, Yamamoto Y. J. Org. Chem. 1989; 54: 4055
    • 4a Kaneko Y, Kiyotsuka Y, Acharya HP, Kobayashi Y. Chem. Commun. 2010; 46: 5482
    • 4b Feng C, Kobayashi Y. J. Org. Chem. 2013; 78: 3755
    • 4c Feng C, Kaneko Y, Kobayashi Y. Tetrahedron Lett. 2013; 54: 4629
    • 4d Kawashima H, Kaneko Y, Sakai M, Kobayashi Y. Chem. Eur. J. 2014; 20: 272
    • 4e Ozaki T, Kobayashi Y. Org. Chem. Front. 2015; 2: 328
    • 4f Ozaki T, Kobayashi Y. Synlett 2015; 26: 1085
  • 5 Substitution of secondary allylic 4-Ph2PC6H4 esters with PhMgBr produces mixture of regioisomers (ref. 3b and 3d), whereas that of primary allylic phosphates with ArAlEt2 proceeds with high regioselectivity and with somewhat low enantioselectivity (ref. 2j). Pd-catalyzed substitution of allylic acetates and PhB(OH)2 gives SN2′ products. However, stereoselectivity was not studied: Ohmiya H, Makida Y, Li D, Tanabe M, Sawamura M. J. Am. Chem. Soc. 2010; 132: 879
    • 6a Kiyotsuka Y, Kobayashi Y. Tetrahedron Lett. 2008; 49: 7256
    • 6b Kiyotsuka Y, Kobayashi Y. J. Org. Chem. 2009; 74: 7489
    • 6c Kiyotsuka Y, Kobayashi Y. Tetrahedron 2010; 66: 676

      Although being Cu(II) species, Cu(acac)2 is likely reduced to Cu+ species by ArMgBr; see:
    • 7a House HO, Respess WL, Whitesides GM. J. Org. Chem. 1966; 31: 3128
    • 7b Fujii N, Nakai K, Habashita H, Yoshizawa H, Ibuka T, Garrido F, Mann A, Chounan Y, Yamamoto Y. Tetrahedron Lett. 1993; 34: 4227
  • 8 Prepared according to the procedure in: Enev VS, Felzmann W, Gromov A, Marchart S, Mulzer J. Chem. Eur. J. 2012; 18: 9651
  • 9 Seyferth D. Organometallics 2006; 25: 2
  • 10 Snieckus V. Chem. Rev. 1990; 90: 879
  • 11 Reuman M, Meyers AI. Tetrahedron 1985; 41: 837
  • 12 Strick BF, Mundal DA, Thomson RJ. J. Am. Chem. Soc. 2011; 133: 14252
  • 13 Gao Y, Hanson RM, Klunder JM, Ko SY, Masamune H, Sharpless KB. J. Am. Chem. Soc. 1987; 109: 5765
  • 14 The kinetic resolution was repeated several times and the alcohol with 98% ee was used for the next reaction.
  • 15 Defined as (% ee of product)·100/[% ee of (R)-8].
    • 16a Ozonolysis of (R)-9e derived from (R)-8 (87% ee) gave the aldehyde with [α]D 22 +23 (c 1.03, CHCl3); cf. [α]D 20 –65.2 (c 1.45, CHCl3).16b The lower value is attributed to contamination of unidentified compound (s) that was eluted with the aldehyde during chromatography.
    • 16b Kita Y, Furukawa A, Futamura J, Ueda K, Sawama Y, Hamamoto H, Fujioka H. J. Org. Chem. 2001; 66: 8779