Synlett 2016; 27(10): 1511-1515
DOI: 10.1055/s-0035-1561420
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of [2,2′-Bipyridine]-1,1′-diium Tricyanomethanide as a Bifunctional Nanostructured Ionic Liquid: Application to the Synthesis of 2-Aryl-5-methyl-2,3-dihydro-1H-3-pyrazolone Derivatives

Mohammad Ali Zolfigol*
Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran   Email: zolfi@basu.ac.ir
,
Navid Mansouri
Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran   Email: zolfi@basu.ac.ir
,
Saeed Baghery
Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran   Email: zolfi@basu.ac.ir
› Author Affiliations
Further Information

Publication History

Received: 17 January 2016

Accepted after revision: 03 March 2016

Publication Date:
30 March 2016 (online)


Abstract

{[2,2′-BPyH][C(CN)3]2} was synthesized and fully characterized by IR, 1H NMR, 13C NMR, mass, X-ray diffraction patterns (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric (TG), and differential thermal (DTA) analysis. [2,2′-Bipyridine]-1,1′-diium tricyanomethanide {[2,2′-BPyH][C(CN)3]2} as a bifunctional nanostructure ionic liquid beneficial catalyzed the synthesis of 2-aryl-5-methyl-2,3-dihydro-1H-3-pyrazolone derivatives via the one-pot, four-component condensation reaction of aromatic aldehydes, ethyl acetoacetate, phenyl hydrazine, and β-naphthol under solvent-free conditions at room temperature. The major advantages of the offered process are efficient catalysis and recyclability of catalyst.

Supporting Information

 
  • References and Notes

  • 1 Marsh KN, Boxall JA, Lichtenthaler R. Fluid Phase Equilib. 2004; 219: 93
  • 2 Hallett JP, Welton T. Chem. Rev. 2011; 111: 3508
  • 3 Holbrey JD, Turner MB, Rogers RD. ACS Symp. Ser. 2003; 856: 2
  • 4 Jarosik A, Krajewski SR, Lewandowski A, Radzimski P. J. Mol. Liq. 2006; 123: 43
  • 5 Wishart JF. Energy Environ. Sci. 2009; 2: 956
  • 6 Ma J, Hong X. J. Environ. Manage. 2012; 99: 104
  • 7 Mohammad-Fauzi AH, Amin NA. S. Renew. Sust. Energy Rev. 2012; 16: 5770
    • 8a Smiglak M, Metlen A, Rogers RD. Acc. Chem. Res. 2007; 40: 1182
    • 8b Taheri A, Lai B, Cheng C, Gu Y. Green Chem. 2015; 17: 812
  • 9 Egorova KS, Ananikov VP. ChemSusChem. 2014; 7: 336
    • 10a Hudlicky T. Chem. Rev. 1996; 96: 3
    • 10b Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
    • 10c Yu L, Chen B, Huang X. Tetrahedron Lett. 2007; 48: 925
    • 10d Cioc RC, Ruijter E, Orru RV. A. Green. Chem. 2014; 16: 2958
    • 10e Li M, Taheri A, Liu M, Sun S, Gu Y. Adv. Synth. Catal. 2014; 356: 537
  • 11 Scheibye S, El-Barbary AA, Lawesson SO, Fritz H, Rihs G. Tetrahedron 1982; 38: 3753
  • 12 The Chemistry of Heterocyclic Compounds, Pyrazolinones, Pyrazolidones and Derivatives. Weissberger A, Wiley RH, Wiley P. Wiley; New York: 1964
  • 13 Dhol PN, Achary TE, Nayak A. J. Indian Chem. Soc. 1975; 52: 1196
  • 14 Joerg S, Reinhold G, Otto S, Joachim SH, Robert S, Klaus L. DE 3625686 (Cl C07D 231/22), 1988 ; Chem. Abstr. 1988, 108, 167465;
  • 15 Hiremith SP, Rudresh K, Saundan AR. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2002; 41: 394
  • 16 Souza FR, Souaza VT, Ratzlaff V, Borges LP, Olivera MR, Bonacorso HG, Zanatta N, Martina MA, Mello CF. Eur. J. Pharm. 2002; 451: 141
  • 17 Singh J, Tripathy R. WO 2001052856A3, 2001
  • 18 Bailey DM, Hansen PE, Hlavac AG, Baizman ER, Pearl J, Defelice AF, Feigenson ME. J. Med. Chem. 1985; 28: 256
  • 19 Karcı F, Ertan N. Dyes Pigm. 2002; 55: 99
  • 20 Ho YW. Dyes Pigm. 2005; 64: 223
  • 21 Chauhan PM. S, Singh S, Chatterjee RK. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1993; 32: 858
  • 22 Rosiere CE, Grossman MI. Science 1951; 113: 651
  • 23 Ziarati A, Safaei-Ghomi J, Rohani S. Ultrason. Sonochem. 2013; 20: 1069
  • 24 Gunasekaran P, Perumal S, Yogeeswari P, Sriram D. Eur. J. Med. Chem. 2011; 46: 4530
    • 25a Wang W, Wang SX, Qin XY, Li JT. Synth. Commun. 2005; 35: 1263
    • 25b Hasaninejad A, Shekouhy M, Zare A, Hoseini Ghattali SM. S, Golzar N. J. Iran. Chem. Soc. 2011; 8: 411
  • 26 Hayes R, Warr GG, Atkin R. Chem. Rev. 2015; 115: 6357
    • 27a Salehi P, Zolfigol MA, Shirini F, Baghbanzadeh M. Curr. Org. Chem. 2006; 10: 2171
    • 27b Zolfigol MA, Shirini F, Salehi P, Abedini M. Curr. Org. Chem. 2008; 12: 183
    • 27c Daraei M, Zolfigol MA, Derakhshan-Panah F, Shiri M, Kruger HG, Mokhlesi M. J. Iran. Chem. Soc. 2015; 12: 855
    • 27d Azarifar D, Khatami SM, Zolfigol MA, Nejat-Yami R. J. Iran. Chem. Soc. 2014; 11: 1223
    • 27e Safaiee M, Zolfigol MA, Tavasoli M, Mokhlesi M. J. Iran. Chem. Soc. 2014; 11: 1593
    • 27f Khazaei A, Zolfigol MA, Mokhlesi M, Rostamian R. J. Iran. Chem. Soc. 2013; 10: 1297
    • 28a Moosavi-Zare AR, Zolfigol MA, Khakyzadeh V, Böttcher C, Beyzavi MH, Zare A, Hasaninejad A, Luque R. J. Mater. Chem. A 2014; 2: 770
    • 28b Zolfigol MA, Baghery S, Moosavi-Zare AR, Vahdat SM. RSC Adv. 2015; 5: 32933
    • 28c Zolfigol MA, Baghery S, Moosavi-Zare AR, Vahdat SM, Alinezhad H, Norouzi M. RSC Adv. 2015; 5: 45027
    • 28d Zolfigol MA, Baghery S, Moosavi-Zare AR, Vahdat SM, Alinezhad H, Norouzi M. RSC. Adv. 2014; 4: 57662
    • 28e Zolfigol MA, Afsharnadery F, Baghery S, Salehzadeh S, Maleki F. RSC Adv. 2015; 5: 75555
    • 28f Zolfigol MA, Baghery S, Moosavi-Zare AR, Vahdat SM. J. Mol. Catal. A.: Chem. 2015; 409: 216
    • 28g Zolfigol MA, Ayazi R, Baghery S. RSC Adv. 2015; 5: 71942
  • 29 Das VK, Devi RR, Raul PK, Thakur AJ. Green Chem. 2012; 14: 847
    • 30a Campd C, Camps J, Font J, de March P. J. Org. Chem. 1987; 52: 521
    • 30b Janiak C, Deblon S, Wu HP, Kolm MJ, Klüfers P, Piotrowski H, Mayer P. Eur. J. Inorg. Chem. 1999; 1507
  • 31 Smith MB, March J. March's Advanced organic Chemistry, Reactions, Mechanisms and Structure. 6th ed. Wiley-Interscience; Hoboken: 2007: 142
  • 32 Experimental General Procedure for the Preparation of NIL Catalyst [2,2′-Bipyridine]-1,1′-diium Tricyanomethanide {[2,2′-BPyH]-[C(CN)3]2} 2,2′-Bipyridine (5 mmol, 0.781 g) was added to an aq solution of tricyanomethane (5 mmol, 0.455 g, 5 mL), and the mixture was stirred at room temperature for 3 h. Consequently, the solvent was removed under reduced pressure and the brown residue was dried under vacuum at 100 °C for 3 h. A brown solid formed which was filtered, washed with Et2O three times and then dried under vacuum. Brown solid; mp 95–97 °C; yield 96% (1.624 g). IR (KBr): ν = 3378, 3088, 3055, 2250, 1683, 1580, 1457, 1251 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 1.76 (s, 2 H, NH), 7.47 (d, 2 H, J = 6.6 Hz, ArH), 7.97 (t, 2 H, J = 8.6 Hz, ArH), 8.40 (d, 2 H, J = 8.0 Hz, ArH), 8.70 (t, 2 H, J = 7.2 Hz, ArH). 13C NMR (100 MHz, DMSO-d 6): δ = 63.0, 70.0, 120.9, 124.7, 137.8, 149.7, 155.7. MS: m/z = 338 [M]+. General Procedure for the Synthesis of 2-Aryl-5-methyl-2,3-dihydro-1H-3-pyrazolone Derivatives To a mixture of aromatic aldehyde (1 mmol), ethyl acetoacetate (0.130 g, 1 mmol), phenylhydrazine (0.108 g, 1 mmol), and β-naphthol (0.144 g, 1 mmol) in a round-bottom flask connected to condenser, 1 mol% of {[2,2-BPyH][C(CN)3]2} was added, and the resulting mixture was stirred magnetically under solvent-free conditions at room temperature for the requisite time (Table 3). After completion of the reaction as monitored by TLC (n-hexane–EtOAc = 5:2), EtOAc (10 mL) was added, the reaction mixture stirred and refluxed for 5 min, and then washed with water (10 mL) and decanted to separate catalyst from the other materials (the reaction product was soluble in hot EtOAc and the catalyst was soluble in water). The aqueous layer was decanted, separated and, after removing water, the residual catalyst could be reused. The organic layer was evaporated, and the crude product was purified by recrystallization from EtOH (for spectroscopic data of the products, see Supporting Information)