Synlett 2016; 27(08): 1255-1261
DOI: 10.1055/s-0035-1561443
letter
© Georg Thieme Verlag Stuttgart · New York

A Polycyclic Aromatic Hydrocarbon Bearing an All-cis Tetrabenzo[5.5.5.5]fenestrane (Fenestrindane) Core Merged with Two Hexa-peri-hexabenzocoronene Units

Peng An
a   Department of Chemistry, The Center of Novel Functional Molecules and Institute of Molecular Functional Materials, The Chinese University of Hong Kong, Shatin, Hong Kong SAR   Email: hfchow@cuhk.edu.hk
,
Hak-Fun Chow*
a   Department of Chemistry, The Center of Novel Functional Molecules and Institute of Molecular Functional Materials, The Chinese University of Hong Kong, Shatin, Hong Kong SAR   Email: hfchow@cuhk.edu.hk
,
Dietmar Kuck*
b   Department of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, 33615 Bielefeld, Germany   Email: dietmar.kuck@uni-bielefeld.de
› Author Affiliations
Further Information

Publication History

Received: 10 March 2016

Accepted after revision: 29 March 2016

Publication Date:
18 April 2016 (online)


Dedicated to Prof. T.-Y. Luh of National Taiwan University on the occasion of his 70th birthday

Abstract

The successful merging of two multiply tert-butylated hexa-peri-hexabenzocoronene (HBC) units with all-cis-tetrabenzo[5.5.5.5]-fenestrane (fenestrindane) at two opposite aromatic rings was described. Due to steric inhibition of the tert-butyl substituents near the merging region with the fenestrindane core, attempts to construct a highly warped but fully conjugated polycyclic aromatic hydrocarbon that contains two cycloheptatriene rings failed to materialize.

Supporting Information

 
  • References and Notes

  • 1 Polycyclic Arenes and Heteroarenes: Synthesis, Properties and Applications. Miao Q. Wiley-VCH; Weinheim: 2015
  • 2 Scott LT. Chem. Soc. Rev. 2015; 44: 6464
    • 3a Luo J, Xu X, Mao R, Miao Q. J. Am. Chem. Soc. 2012; 134: 13796
    • 3b Cheung KY, Xu X, Miao Q. J. Am. Chem. Soc. 2015; 137: 3910
    • 4a Yamamoto K, Saitho Y, Iwaki D, Ooka T. Angew. Chem., Int. Ed. Engl. 1991; 30: 1173
    • 4b Wu Y.-T, Siegel JS. Chem. Rev. 2006; 106: 4843
    • 4c Tsefrikas VM, Scott LT. Chem. Rev. 2006; 106: 4868
    • 4d Bharat, Bhola R, Bally T, Valente A, Cyrański MK, Dobrzycki L, Spain SM, Rempała P, Chin MR, King BT. Angew. Chem. Int. Ed. 2010; 49: 399
    • 4e Feng C.-N, Kuo M.-Y, Wu Y.-T. Angew. Chem. Int. Ed. 2013; 52: 7791
    • 4f Kawasumi K, Zhang Q, Segawa Y, Scott LT, Itami K. Nat. Chem. 2013; 5: 739
    • 4g Sakamoto Y, Suzuki T. J. Am. Chem. Soc. 2013; 135: 14074
    • 4h Miller RW, Duncan AK, Schneebeli ST, Gray DL, Whalley AC. Chem. Eur. J. 2014; 20: 3705
    • 4i Kato K, Segawa Y, Scott LT, Itami K. Chem. Asian J. 2015; 10: 1635
    • 5a Pascal RA, McMillan WD, Van Engen D. J. Am. Chem. Soc. 1986; 108: 5652
    • 5b Lu J, Ho DM, Vogelaar NJ, Krami CM, Pascal RA. Jr. J. Am. Chem. Soc. 2004; 126: 11168
    • 5c Collins SK, Grandbois A, Vachon MP, Côté J. Angew. Chem. Int. Ed. 2006; 45: 2923
    • 5d Xiao J, Duong HM, Liu Y, Shi W, Ji L, Li G, Li S, Liu X.-W, Ma J, Wudl F, Zhang Q. Angew. Chem. Int. Ed. 2012; 51: 6094
    • 5e Pradhan A, Dechambenoit P, Bock H, Durola F. J. Org. Chem. 2013; 78: 2266
    • 5f Arslan H, Uribe-Romo FJ, Smith BJ, Dichtel WR. Chem. Sci. 2013; 4: 3973
    • 5g Fujikawa T, Segawa Y, Itami K. J. Am. Chem. Soc. 2015; 137: 7763
    • 5h Kashihara H, Asada T, Kamikawa K. Chem. Eur. J. 2015; 21: 6523
  • 6 Mughal EU, Kuck D. Chem. Commun. 2012; 48: 8880
  • 7 Mughal EU, Neumann B, Stammler H.-G, Kuck D. Eur. J. Org. Chem. 2014; 7469

    • For reviews of fenestranes, see:
    • 8a Venepalli BR, Agosta WC. Chem. Rev. 1987; 87: 399
    • 8b Gupta AK, Fu X, Snyder JP, Cook JM. Tetrahedron 1991; 47: 3665
    • 8c Luef W, Keese R. Advances in Strain in Organic Chemistry. Vol. 3. Halton B. JAI Press; Greenwich: 1993: 229
    • 8d Thommen M, Keese R. Synlett 1997; 231
    • 8e Kuck D. Advances in Theoretically Interesting Molecules. Vol. 4. Thummel RP. JAI Press; Greenwich: 1998: 81
    • 8f Hopf H. Classics in Hydrocarbon Chemistry. Wiley-VCH; Weinheim: 2000: 81
    • 8g Keese R. Chem. Rev. 2006; 106: 4787
    • 8h Kuck D. Chem. Rev. 2006; 106: 4885
    • 8i Boudhar A, Charpenay M, Blond G, Suffert J. Angew. Chem. Int. Ed. 2013; 52: 12786
    • 9a Kuck D, Bögge H. J. Am. Chem. Soc. 1986; 108: 8107
    • 9b Kuck D. Chem. Ber. 1994; 127: 409
  • 10 Tellenbröker J, Kuck D. Eur. J. Org. Chem. 2001; 1483
  • 11 For the stereochemistry of cis/trans-spirotriketones in this series, see: Bredenkötter B, Neumann B, Stammler HG, Kuck D. Eur. J. Org. Chem. 2014; 53 ; and literature cited therein
  • 12 X-ray Crystal Data for 12 (Recrystallized from CH2Cl2–Hexane) C27H16O2; M = 372.40; orthorhombic; a = 10.4776(4), b = 16.9738(6), c = 10.9334(6) Å; α = β = γ = 90°; V = 1944.44(14) Å3; space group Aba2; Z = 4; ρ calcd = 1.272 mg m–3; T = 296(2) K; λ (Cu Kα) = 1.54178 Å; 11428 reflections collected; 1785 independent reflections; R int = 0.0359; observed data with I ≥ 2σ(I) = 1785; R 1 = 0.0439, wR 2 = 0.1336 [I ≥ 2σ(I)]. CCDC-1455197 contains the supplementary crystallographic data for 12. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 13 Raasch MS. J. Org. Chem. 1980; 45: 856
  • 14 See Supporting Information for details.
  • 15 Draper SM, Gregg DJ, Madathil R. J. Am. Chem. Soc. 2002; 124: 3486
  • 16 Feng X, Wu J, Enkelmann V, Müllen K. Org. Lett. 2006; 8: 1145
  • 17 Typical Experimental Procedure for the Synthesis of 3 Into a dried flask equipped with a magnetic stirrer was added a solution of compound 19 (30 mg, 16 μmol) in CH2Cl2 (100 mL). The solution was degassed by bubbling argon through it for 10 min, and then a solution of FeCl3 (500 mg) in MeNO2 (2.0 mL) was added dropwise via a syringe. After 20 min, the reaction was quenched by addition of MeOH (100 mL). The solvent was removed under reduced pressure, and the residue was purified by flash silica gel chromatography (eluent: 30% CH2Cl2 in hexanes) to give compound 3 (27 mg, 90%) as a light yellow solid; mp >250 °C. 1H NMR (400 MHz, CDCl3): δ = 9.93 (s, 2 H), 9.70 (s, 2 H), 9.56 (s, 2 H), 9.46 (s, 2 H), 9.41 (br, 12 H), 9.37 (s, 2 H), 8.30–8.28 (m, 2 H), 7.75–7.73 (m, 2 H), 7.26–7.22 (m, 2 H), 7.10 (s, 2 H), 6.76–6.73 (m, 2 H), 6.00 (s, 2 H), 1.98 (s, 18 H), 1.92 (s, 18 H), 1.91 (s, 18 H), 1.89 (s, 18 H), 1.63 (s, 18 H). 13C NMR (100 MHz, CDCl3): δ = 149.2, 149.1, 148.1, 145.4, 144.9, 144.1, 139.0, 131.2, 131.2, 130.6, 130.5, 130.5, 130.4, 130.3, 130.1, 129.7, 128.4, 127.6, 127.4, 126.5, 125.3, 125.1, 124.7, 124.1, 124.0, 123.8, 123.6, 121.2, 120.8, 120.7, 120.6, 120.2, 119.5, 119.1, 119.1, 119.0, 118.7, 71.0, 66.5, 64.0, 35.9, 35.8, 32.2, 32.0, 31.9. MS (MALDI-TOF): m/z calcd for 13C1 12C140H124 +∙: 1817.9737 [13C1 – M+∙]; found: 1817.9777.
  • 18 Zhai L, Shukla R, Rathore R. Org. Lett. 2009; 11: 3474
  • 19 Dötz F, Brand JD, Ito S, Gherghel L, Müllen K. J. Am. Chem. Soc. 2000; 122: 7707
  • 20 Herwig PT, Enkelmann V, Schmelz O, Müllen K. Chem. Eur. J. 2000; 6: 1834
  • 21 Roberts DJ, Nolan D, Máille GM. Ó, Watson GW, Singh A, Ledoux-Rak I, Draper SM. Dalton Trans. 2012; 41: 8850