Synlett 2016; 27(14): 2161-2166
DOI: 10.1055/s-0035-1561451
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of 2-Alkynyl-1,4-cyclohexadienes via a Diels–Alder Reaction of Conjugated 2,4-Diynones

Khagendra B. Hamal
Department of Chemistry, University of Nevada-Reno, 1664 N. Virginia Street, Reno, NV 89557, USA   Email: wchalifoux@unr.edu
,
Radha Bam
Department of Chemistry, University of Nevada-Reno, 1664 N. Virginia Street, Reno, NV 89557, USA   Email: wchalifoux@unr.edu
,
Wesley A. Chalifoux*
Department of Chemistry, University of Nevada-Reno, 1664 N. Virginia Street, Reno, NV 89557, USA   Email: wchalifoux@unr.edu
› Author Affiliations
Further Information

Publication History

Received: 16 February 2016

Accepted after revision: 13 April 2016

Publication Date:
18 May 2016 (online)


Abstract

The development and utilization of highly functionalized and reactive dienophiles in the Diels–Alder cyclization reaction is of value in producing diversely functionalized, and therefore useful, cyclic products. We have developed a Diels–Alder reaction of conjugated 2,4-diynones, promoted by Lewis acids, to produce substituted 2-alkynyl-1,4-cyclohexadiene (‘skipped’ cyclohexadiene) products in good to excellent yields. The reaction was successful with a variety of cyclic and acyclic dienes as well as with a diversity of 2,4-diynones.

Supporting Information

 
  • References and Notes

  • 1 Diels O, Alder K. Justus Liebigs Ann. Chem. 1928; 460: 98
    • 2a Nicolaou KC, Snyder SA, Montagnon T, Vassilikogiannakis G. Angew. Chem. Int. Ed. 2002; 41: 1668
    • 2b Woodward RB, Sondheimer F, Taub D, Heusler K, McLamore WM. J. Am. Chem. Soc. 1952; 74: 4223
    • 2c Zheng H, He P, Liu Y, Zhang Y, Liu X, Lin L, Feng X. Chem. Commun. 2014; 50: 8794
    • 2d Nawrat CC, Moody CJ. Angew. Chem. Int. Ed. 2014; 53: 2056
    • 2e Wender PA, Schaus JM, White AW. J. Am. Chem. Soc. 1980; 102: 6157
    • 2f Yin J, Kong L, Wang C, Shi Y, Cai S, Gao S. Chem. Eur. J. 2013; 19: 13040
    • 3a Payette JN, Yamamoto H. Angew. Chem. Int. Ed. 2009; 48: 8060
    • 3b Ishihara K, Fushimi M. J. Am. Chem. Soc. 2008; 130: 7532
    • 3c Corey EJ, Lee TW. Tetrahedron Lett. 1997; 38: 5755
    • 3d Liu L.-Z, Han J.-C, Yue G.-Z, Li C.-C, Yang Z. J. Am. Chem. Soc. 2010; 132: 13608
    • 3e Yee-Fung L, Fallis A. Can. J. Chem. 1995; 73: 2239
    • 3f Winkler JD, Holland JM, Peters DA. J. Org. Chem. 1996; 61: 9074
    • 3g Kraus G, Taschner M. J. Am. Chem. Soc. 1980; 102: 1974
    • 3h Hilt G, Danz M. Synthesis 2008; 2257
    • 3i Métral J.-L, Lauterwein J, Vogel P. Helv. Chim. Acta 1986; 69: 1287
    • 4a For examples of transition-metal-mediated Diels–Alder reactions and follow-up transformations of 1,4-cyclohexadienes, see: Hilt G. Chem. Rec. 2014; 14: 386 ; and references therein
    • 4b Hilt G, Pünner F In Transition-Metal-Mediated Aromatic Ring Construction . Tanaka K. John Wiley & Sons; Hoboken: 2013: 341 ; and references therein
    • 5a Rabideau PW, Marcinow Z. The Birch Reduction of Aromatic Compounds. In Organic Reactions . Vol. 42. Paquette LA. John Wiley & Sons; New York: 1992: 1
    • 5b Birch AJ. J. Chem. Soc. 1944; 430
    • 6a Fang Z, Wills M. Org. Lett. 2014; 16: 374
    • 6b Bowling NP, Burrmann NJ, Halter RJ, Hodges JA, McMahon RJ. J. Org. Chem. 2010; 75: 6382
    • 6c Shi Shun AL. K, Chernick ET, Eisler S, Tykwinski RR. J. Org. Chem. 2003; 68: 1339
    • 6d Chalifoux WA, Tykwinski RR. Chem. Rec. 2006; 6: 169
  • 7 Walton DR. M, Waugh F. J. Organomet. Chem. 1972; 37: 45
  • 8 Klein D. Alkynes. In Organic Chemistry . John Wiley & Sons; Hoboken: 2015. 2 ed. 464
    • 9a Sonogashira K. J. Organomet. Chem. 2002; 653: 46
    • 9b Chinchilla R, Najera C. Chem. Soc. Rev. 2011; 40: 5084
    • 9c Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 10a Terada M, Li F, Toda Y. Angew. Chem. Int. Ed. 2014; 53: 235
    • 10b Tovar JD, Swager TM. J. Org. Chem. 1999; 64: 6499
    • 10c Asao N, Sato K, Menggenbateer Yamamoto Y. J. Org. Chem. 2005; 70: 3682
    • 10d Yue D, Della Cà N, Larock RC. Org. Lett. 2004; 6: 1581
    • 10e Iwasawa N, Shido M, Kusama H. J. Am. Chem. Soc. 2001; 123: 5814
    • 10f Nagahora N, Wasano T, Nozaki K, Ogawa T, Nishijima S, Motomatsu D, Shioji K, Okuma K. Eur. J. Org. Chem. 2014; 2014: 1423
  • 11 Ali AA, Chetia M, Saikia PJ, Sarma D. RSC Adv. 2014; 4: 64388
  • 12 General Procedure for Diels–Alder Reaction of Diynones: To a solution of diynone 1 (1.0 equiv) and diene 2 (5.0 equiv) in CH2Cl2 (ca. 0.05–0.15 M) was added dimethylaluminum chloride (1.0 M in hexanes, 1.0 equiv) slowly over 10 min. The reaction mixture was stirred at r.t. for 1–5 h, quenched with dilute aq NaHCO3, dried over anhyd MgSO4 and filtered. The solvent was removed in vacuo and the crude product was purified by column chromatography (silica gel).
  • 13 1-Benzoyl-2-[2-(trimethylsilyl)ethynyl]-4,5-dimethyl-1,4-cyclohexadiene (3a): This reaction was performed according to the general procedure (305 mg of diynone 1a and 748 μL of diene 2a). Purification by column chromatography (toluene) afforded 3a (366 mg, 88% yield) as a pale yellow oil; Rf 0.52 (toluene). 1H NMR (500 MHz, CDCl3): δ = 7.86–7.93 (m, 2 H), 7.50–7.55 (m, 1 H), 7.39–7.44 (m, 2 H), 2.95–3.02 (m, 2 H), 2.84–2.91 (m, 2 H), 1.67 (s, 6 H, 2 × Me), –0.17 (s, 9 H). 13C NMR (125 MHz, CDCl3): δ = 198.7, 141.9, 137.2, 133.0, 129.8, 128.5, 122.2 (2 coincidental peaks), 120.5, 103.2, 101.7, 38.0, 35.0, 18.3, 18.1, –0.4. IR (cast film): 2959, 2858, 2813, 2142, 1656, 1598, 1580, 1448 cm–1. HRMS (ESI–TOF): m/z [M + Na]+ calcd for C20H24NaOSi: 331.1494; found: 331.1490.