Synthesis 2016; 48(05): 653-676
DOI: 10.1055/s-0035-1561505
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances on Asymmetric Nitroso Aldol Reaction

Pedro Merino*
a   Laboratorio de Síntesis Asimétrica, Departamento de Síntesis y Estructura de Biomoléculas, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza, CSIC, Campus San Francisco, 50009 Zaragoza, Aragón, Spain
,
Tomás Tejero
a   Laboratorio de Síntesis Asimétrica, Departamento de Síntesis y Estructura de Biomoléculas, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza, CSIC, Campus San Francisco, 50009 Zaragoza, Aragón, Spain
,
Ignacio Delso
a   Laboratorio de Síntesis Asimétrica, Departamento de Síntesis y Estructura de Biomoléculas, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza, CSIC, Campus San Francisco, 50009 Zaragoza, Aragón, Spain
b   Servicio de Resonancia Magnética Nuclear, CEQMA, Universidad de Zaragoza, CSIC, Campus San Francisco, 50009 Zaragoza, Aragón, Spain
,
Rosa Matute
c   Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Escuela Universitaria de Ingeniería Industrial, Edificio Torres Quevedo, Campus Actur, 50014 Zaragoza, Aragón, Spain   Email: pmerino@unizar.es
› Author Affiliations
Further Information

Publication History

Received: 19 September 2015

Accepted after revision: 07 December 2015

Publication Date:
13 January 2016 (online)


Dedicated to Professor Carmen Nájera, the 2015 recipient of the IUPAC 2015 Distinguished Women in Chemistry or Chemical Engineering Award

Abstract

The reaction of aromatic nitroso derivatives with enolizable carbonyl compounds (nitroso aldol reaction) to give either α-hydroxyamino or α-aminoxy carbonyl compounds is an important synthetic method. This review illustrates the recent advances in rendering the process regio- and enantioselective as well as catalytic. By employing metal and organic catalysts a range of α-amino (α-oxyamination) and α-hydroxy (α-aminoxylation) carbonyl derivatives can be generated with total regioselectivity and high levels of enantiomeric excess.

1 Introduction

2 Metal-Catalyzed Reactions

3 Organocatalyzed Reactions

4 Enamine Metal-Free Reactions

5 Concluding Remarks

 
  • References

  • 1 Zuman P, Shah B. Chem. Rev. 1994; 94: 1621
  • 2 Lee J, Chen L, West AH, Richter-Addo GB. Chem. Rev. 2002; 102: 1019
  • 3 Yamamoto H, Kawasaki M. Bull. Chem. Soc. Jpn. 2007; 80: 595
  • 4 Yamamoto H, Momiyama N. Chem. Commun. 2005; 3514
  • 5 Adam W, Krebs O. Chem. Rev. 2003; 103: 4131
  • 6 Baidya M, Yamamoto H. Synthesis 2013; 45: 1931
  • 7 Malkov AV. Chem. Heterocycl. Compd. 2012; 48: 39
  • 8 Yamamoto Y, Yamamoto H. Eur. J. Org. Chem. 2006; 2031
  • 9 Bodnar BS, Miller MJ. Angew. Chem. Int. Ed. 2011; 50: 5629
  • 10 Leach AG, Houk KN. Chem. Commun. 2002; 1243
  • 11 Streith J, Defoin A. Synthesis 1994; 1107
  • 12 Sasaki T, Mori K, Ohno M. Synthesis 1985; 279
  • 13 Momiyama N, Yamamoto H. Angew. Chem. Int. Ed. 2002; 41: 2986
  • 14 Morales MR, Momiyama N, Yamamoto H. Synlett 2006; 705
  • 15 Momiyama N, Yamamoto H. Org. Lett. 2002; 4: 3579
  • 16 Merino P, Tejero T. Angew. Chem. Int. Ed. 2004; 43: 2995
  • 17 Yu C, Song A, Zhang F, Wang W. ChemCatChem 2014; 6: 1863
  • 18 Palmer LI, Frazier CP, Read de Alaniz J. Synthesis 2013; 45: 269
  • 19 Momiyama N, Yamamoto H. J. Am. Chem. Soc. 2003; 125: 6038
  • 20 Kawasaki M, Li P, Yamamoto H. Angew. Chem. Int. Ed. 2008; 47: 3795
  • 21 Yanagisawa A, Takeshita S, Izumi Y, Yoshida K. J. Am. Chem. Soc. 2010; 132: 5328
  • 22 Baidya M, Griffin KA, Yamamoto H. J. Am. Chem. Soc. 2012; 134: 18566
  • 23 Frazier CP, Sandoval D, Palmer LI, Read de Alaniz J. Chem. Sci. 2013; 4: 3857
  • 24 Sandoval D, Frazier CP, Bugarin A, Read de Alaniz J. J. Am. Chem. Soc. 2012; 134: 18948
  • 25 Maji B, Yamamoto H. Angew. Chem. Int. Ed. 2014; 53: 14472
  • 26 Tian G.-Q, Yang J, Rosa-Perez K. Org. Lett. 2010; 12: 5072
  • 27 Momiyama N, Yamamoto H. J. Am. Chem. Soc. 2004; 126: 5360
  • 28 Yanagisawa A, Izumi Y, Takeshita S. Synlett 2009; 716
  • 29 Yanagisawa A, Fujinami T, Oyokawa Y, Sugita T, Yoshida K. Org. Lett. 2012; 14: 2434
  • 30 Shen K, Liu X, Wang G, Lin L, Feng X. Angew. Chem. Int. Ed. 2011; 50: 4684
  • 31 Maji B, Baidya M, Yamamoto H. Chem. Sci. 2014; 5: 3941
  • 32 Selig P. Angew. Chem. Int. Ed. 2013; 52: 7080
  • 33 Xu Y.-J, Liu Q.-Z, Dong L. Synlett 2007; 273
  • 34 Zhong G. Angew. Chem. Int. Ed. 2003; 42: 4247
  • 35 Brown SP, Brochu MP, Sinz CJ, MacMillan DW. C. J. Am. Chem. Soc. 2003; 125: 10808
  • 36 Hayashi Y, Yamaguchi J, Hibino K, Shoji M. Tetrahedron Lett. 2003; 44: 8293
  • 37 Bogevig A, Sunden H, Córdova A. Angew. Chem. Int. Ed. 2004; 43: 1109
  • 38 Córdova A, Sunden H, Bogevig A, Johansson M, Himo F. Chem. Eur. J. 2004; 10: 3673
  • 39 Hayashi Y, Yamaguchi J, Sumiya T, Shoji M. Angew. Chem. Int. Ed. 2004; 43: 1112
  • 40 Hayashi Y, Yamaguchi J, Sumiya T, Hibino K, Shoji M. J. Org. Chem. 2004; 69: 5966
  • 41 Hayashi Y, Yamaguchi J, Hibino K, Sumiya T, Urushima T, Shoji M, Hashizume D, Koshino H. Adv. Synth. Catal. 2004; 346: 1435
  • 42 Font D, Bastero A, Sayalero S, Jimeno C, Pericas MA. Org. Lett. 2007; 9: 1943
  • 43 An Y.-J, Wang C.-C, Xu Y.-Z, Wang W.-J, Tao J.-C. Catal. Lett. 2011; 141: 1123
  • 44 Cheong PH.-Y, Houk KN. J. Am. Chem. Soc. 2004; 126: 13912
  • 45 Ramachary DB, Barbas III CF. Org. Lett. 2005; 7: 1577
  • 46 Joseph J, Ramachary DB, Jemmis ED. Org. Biomol. Chem. 2006; 4: 2685
  • 47 Matsuzawa M, Kakeya H, Yamaguchi J, Shoji M, Onose R, Osada H, Hayashi Y. Chem. Asian J. 2006; 1: 845
  • 48 Capitta F, Frongia A, Ollivier J, Piras PP, Secci F. Synlett 2011; 89
  • 49 Yang L, Liu R.-H, Wang B, Weng L.-L, Zheng H. Tetrahedron Lett. 2009; 50: 2628
  • 50 Zhong G. Chem. Commun. 2004; 606
  • 51 Zhong G, Yu Y. Org. Lett. 2004; 6: 1637
  • 52 Lu M, Zhu D, Lu Y, Hou Y, Tan B, Zhong G. Angew. Chem. Int. Ed. 2008; 47: 10187
  • 53 Zhu D, Lu M, Chua PJ, Tan B, Wang F, Yang X, Zhong G. Org. Lett. 2008; 10: 4585
  • 54 Kumarn S, Shaw DM, Longbottom DA, Ley SV. Org. Lett. 2005; 7: 4189
  • 55 Kumarn S, Shaw DM, Ley SV. Chem. Commun. 2006; 3211
  • 56 Lin H, Tan Y, Sun X.-W, Lin G.-Q. Org. Lett. 2012; 14: 3818
  • 57 Guo H.-M, Niu H.-Y, Xue M.-X, Guo Q.-X, Cun L.-F, Mi A.-Q, Jiang Y.-Z, Wang J.-J. Green Chem. 2006; 8: 682
  • 58 Huang K, Huang Z.-Z, Li X.-L. J. Org. Chem. 2006; 71: 8320
  • 59 Ding X, Tang W, Zhu C, Cheng Y. Adv. Synth. Catal. 2010; 352: 108
  • 60 Khan SS, Shah J, Liebscher J. Tetrahedron 2011; 67: 1812
  • 61 Poe SL, Bogdan AR, Mason BP, Steinbacher JL, Opalka SM, McQuade DT. J. Org. Chem. 2009; 74: 1574
  • 62 Demir AS, Basceken S. Tetrahedron: Asymmetry 2013; 24: 1218
  • 63 Momiyama N, Torii H, Saito S, Yamamoto H. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5374
  • 64 Jiao P, Yamamoto H. Synlett 2009; 2685
  • 65 Yamamoto Y, Momiyama N, Yamamoto H. J. Am. Chem. Soc. 2004; 126: 5962
  • 66 Zhu R, Zhang D, Wu J, Liu C. THEOCHEM 2007; 815: 105
  • 67 Jiao P, Kawasaki M, Yamamoto H. Angew. Chem. Int. Ed. 2009; 48: 3333
  • 68 Maji B, Yamamoto H. Angew. Chem. Int. Ed. 2014; 53: 8714
  • 69 Kim S.-G, Park T.-H. Tetrahedron Lett. 2006; 47: 9067
  • 70 Guo H.-M, Cheng L, Cun L.-F, Gong L.-Z, Mi A.-Q, Jiang Y.-Z. Chem. Commun. 2006; 429
  • 71 Wang W, Wang J, Li H, Liao L. Tetrahedron Lett. 2004; 45: 7235
  • 72 Sunden H, Dahlin N, Ibrahem I, Adolfsson H, Cordova A. Tetrahedron Lett. 2005; 46: 3385
  • 73 Kano T, Ueda M, Takai J, Maruoka K. J. Am. Chem. Soc. 2006; 128: 6046
  • 74 Kano T, Yamamoto A, Shirozu F, Maruoka K. Synthesis 2009; 1557
  • 75 Kano T, Shirozu F, Maruoka K. J. Am. Chem. Soc. 2013; 135: 18036
  • 76 Kano T, Shirozu F, Maruoka K. Org. Lett. 2014; 16: 1530
  • 77 Palomo C, Vera S, Velilla I, Mielgo A, Gomez-Bengoa E. Angew. Chem. Int. Ed. 2007; 46: 8054
  • 78 Wong CT. Tetrahedron Lett. 2009; 50: 811
  • 79 Mielgo A, Velilla I, Gomez-Bengoa E, Palomo C. Chem. Eur. J. 2010; 16: 7496
  • 80 Lu M, Zhu D, Lu Y, Zeng X, Tan B, Xu Z, Zhong G. J. Am. Chem. Soc. 2009; 131: 4562
  • 81 Bui T, Candeias NR, Barbas III CF. J. Am. Chem. Soc. 2010; 132: 5574
  • 82 Zhang T, Cheng L, Liu L, Wang D, Chen Y.-J. Tetrahedron: Asymmetry 2010; 21: 2800
  • 83 Jia L.-N, Huang J, Peng L, Wang L.-L, Bai J.-F, Tian F, He G.-Y, Xu X.-Y, Wang L.-X. Org. Biomol. Chem. 2012; 10: 236
  • 84 Companyo X, Valero G, Pineda O, Calvet T, Font-Bardia M, Moyano A, Rios R. Org. Biomol. Chem. 2012; 10: 431
  • 85 Mailhol D, Castillo J.-C, Mohanan K, Abonia R, Coquerel Y, Rodriguez J. ChemCatChem 2013; 5: 1192
  • 86 Lopez-Cantarero J, Cid MB, Poulsen TB, Bella M, Garcia Ruano JL, Jørgensen KA. J. Org. Chem. 2007; 72: 7062
  • 87 Yang H.-J, Dai L, Yang S.-Q, Chen F.-E. Synlett 2012; 23: 948
  • 88 Momiyama N, Yamamoto H. J. Am. Chem. Soc. 2005; 127: 1080
  • 89 Momiyama N, Yamamoto Y, Yamamoto H. J. Am. Chem. Soc. 2007; 129: 1190
  • 90 Akakura M, Kawasaki M, Yamamoto H. Eur. J. Org. Chem. 2008; 4245
  • 91 Lu M, Lu Y, Zhu D, Zeng X, Li X, Zhong G. Angew. Chem. Int. Ed. 2010; 49: 8588