Synthesis 2016; 48(13): 2130-2136
DOI: 10.1055/s-0035-1561588
paper
© Georg Thieme Verlag Stuttgart · New York

Chemoenzymatic Access to (+)-Artabotriol and its Application in Collective Synthesis of (+)-Grandiamide D, (–)-Tulipalin B, (+)-Spirathundiol, and (+)-Artabotriolcaffeate

Ramesh U. Batwal
Division of Organic Chemistry, National Chemical Laboratory (CSIR), Pune 411 008, India   Email: np.argade@ncl.res.in
,
Narshinha P. Argade*
Division of Organic Chemistry, National Chemical Laboratory (CSIR), Pune 411 008, India   Email: np.argade@ncl.res.in
› Author Affiliations
Further Information

Publication History

Received: 22 January 2016

Accepted after revision: 24 February 2016

Publication Date:
12 April 2016 (online)


Abstract

Starting from dimethyl (±)-2-hydroxy-3-methylenesuccinnate chemoenzymatic collective formal/total synthesis of enantiomerically pure bioactive natural products has been described via the advanced level common precursor (+)-artabotriol. An efficient enzymatic resolution with high enantiomeric purity, selective diester to diol reduction, and requisite dehydrative coupling reactions without any racemization are the significant topographies.

Supporting Information

 
  • References

    • 1a Cai X, Ng K, Panesar H, Moon SJ, Paredes M, Ishida K, Hertweck C, Minehan TG. Org. Lett. 2014; 16: 2962
    • 1b Hager D, Paulitz C, Tiebes J, Mayer P, Trauner D. J. Org. Chem. 2013; 78: 10784
    • 1c Nakagawa Y, Doi T, Masuda Y, Takegoshi K, Igarashi Y, Ito Y. J. Am. Chem. Soc. 2011; 133: 17485
    • 1d Taskova RM, Kokubun T, Ryan KG, Garnock-Jones PJ, Jensen SR. J. Nat. Prod. 2011; 74: 1477
    • 1e Taylor JG, Li X, Oberthür M, Zhu W, Kahne DE. J. Am. Chem. Soc. 2006; 128: 15084
  • 2 Yu J, Li T, Sun L, Luo X, Ding W, Li D. J. Chin. Pharm. Sci. 2002; 11: 4
  • 3 Duong TN, Edrada R, Ebel R, Wray V, Frank W, Duong AT, Lin WH, Proksch P. J. Nat. Prod. 2007; 70: 1640
    • 4a Ting W, Zhang Q.-W, Zhang X.-Q, Liu G, Wang L, Jiang M.-M, Feng Y.-F, Ye W.-C. Nat. Prod. Res. 2012; 26: 1408
    • 4b Jiang Z.-H, Wang J.-R, Li M, Liu Z.-Q, Chau K.-Y, Zhao C, Liu L. J. Nat. Prod. 2005; 68: 397
  • 5 Ilangovan A, Saravanakumar S. Beilstein J. Org. Chem. 2014; 10: 127
    • 6a Batwal RU, Argade NP. Org. Biomol. Chem. 2015; 13: 11331
    • 6b Han J.-C, Li F, Li C.-C. J. Am. Chem. Soc. 2014; 136: 13610
    • 6c Jiang S.-Z, Lei T, Wei K, Yang Y.-R. Org. Lett. 2014; 16: 5612
    • 6d Markad SB, Argade NP. Org. Lett. 2014; 16: 5470
    • 6e Zheng Y, Liu Y, Wang Q. J. Org. Chem. 2014; 79: 3348
    • 6f Li H, Wang X, Hong B, Lei X. J. Org. Chem. 2013; 78: 800
    • 6g Jones SB, Simmons B, Mastracchio A, MacMillan DW. C. Nature 2011; 475: 183
    • 6h Flyer AN, Si C, Myers AG. Nat. Chem. 2010; 2: 886
    • 7a Deore PS, Argade NP. J. Org. Chem. 2014; 79: 2538
    • 7b Deore PS, Argade NP. Org. Lett. 2013; 15: 5826
    • 7c Vaidya SD, Argade NP. Org. Lett. 2013; 15: 4006
    • 7d Mondal P, Argade NP. J. Org. Chem. 2013; 78: 6802
    • 7e Patel RM, Argade NP. Org. Lett. 2013; 15: 14 ; and references cited therein
    • 8a Batwal RU, Patel RM, Argade NP. Tetrahedron: Asymmetry 2011; 22: 173
    • 8b Gogoi S, Argade NP. Tetrahedron: Asymmetry 2006; 17: 927
    • 8c Easwar S, Argade NP. Tetrahedron: Asymmetry 2003; 14: 333
    • 8d Easwar S, Desai SB, Argade NP, Ganesh KN. Tetrahedron: Asymmetry 2002; 13: 1367
    • 8e Desai SB, Argade NP, Ganesh KN. J. Org. Chem. 1999; 64: 8105
    • 8f Desai SB, Argade NP, Ganesh KN. J. Org. Chem. 1996; 61: 6730
  • 9 Tanaka A, Yamashita K. Agric. Biol. Chem. 1980; 44: 199
  • 10 Batwal RU, Argade NP. Synthesis 2013; 45: 2888
  • 11 Tschesche R, Kämmerer F.-J, Wulff G, Schönbeck F. Tetrahedron Lett. 1968; 701