Synlett 2016; 27(13): 1979-1982
DOI: 10.1055/s-0035-1562112
letter
© Georg Thieme Verlag Stuttgart · New York

Copper Iodide Mediated Cyanation of Arylboronic Acids and Aryl Iodides with Ethyl (Ethoxymethylene)cyanoacetate as Cyanating Agent

Chaorong Qi*
School of Chemistry and Chemical Engineering, State Key Lab of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. of China   Email: crqi@scut.edu.cn
,
Xiaohan Hu
School of Chemistry and Chemical Engineering, State Key Lab of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. of China   Email: crqi@scut.edu.cn
,
Haitao He
School of Chemistry and Chemical Engineering, State Key Lab of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. of China   Email: crqi@scut.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 20 February 2016

Accepted after revision: 01 April 2016

Publication Date:
04 May 2016 (online)


Abstract

An efficient copper iodide mediated cyanation of arylboronic acids and aryl iodides with ethyl (ethoxymethylene)cyanoacetate as cyanating agent has been developed. The reaction involves a C(sp2)–CN bond cleavage and tolerates a wide range of functional groups, affording the corresponding aryl nitriles in moderate to excellent yields.

Supporting Information

 
  • References and Notes


    • Recent reviews on C–CN bond activation, see:
    • 1a Nakao Y. Top Curr. Chem. 2014; 346: 33
    • 1b Tobisu M, Chatani N. Chem. Soc. Rev. 2008; 37: 300
    • 1c Chen F, Wang T, Jiao N. Chem. Rev. 2014; 114: 8613
    • 2a Fleming FF, Wang Q. Chem. Rev. 2003; 103: 2035
    • 2b Miller JS, Manson JL. Acc. Chem. Res. 2001; 34: 563
    • 2c Kleemann A, Engel J, Kutscher B, Reichert D. Pharmaceutical Substance: Syntheses, Patents, Applications . Thieme; Stuttgart: 2001. 4th ed
    • 3a Wen Q, Jin J, Zhang L, Luo Y, Lu P, Wang Y. Tetrahedron Lett. 2014; 55: 1271
    • 3b Kim J, Kim HJ, Chang S. Angew. Chem. Int. Ed. 2012; 51: 11948

      Recent reports, see:
    • 4a Xu W, Xu Q, Li J. Org. Chem. Front. 2015; 2: 231
    • 4b Zhao M, Zhang W, Shen Z. J. Org. Chem. 2015; 80: 8868
    • 4c Zhu Y, Li L, Shen Z. Chem. Eur. J. 2015; 21: 13246
    • 4d Pan C, Jin H, Pan X, Liu X, Cheng Y, Zhu C. J. Org. Chem. 2013; 78: 9494
    • 4e Kou X, Zhao M, Qiao X, Zhu Y, Tong X, Shen Z. Chem. Eur. J. 2013; 19: 16880
    • 4f Zhu Y, Zhao M, Lu W, Li L, Shen Z. Org. Lett. 2015; 17: 2602
    • 5a Sundermeier M, Zapf A, Beller M. Angew. Chem. Int. Ed. 2003; 42: 1661
    • 5b Cristau H.-J, Ouali A, Spindler J.-F, Taillefer M. Chem. Eur. J. 2005; 11: 2483
    • 5c Schareina T, Zapf A, Cotté A, Gotta M. Adv. Synth. Catal. 2011; 353: 777
  • 6 Jiang Z, Huang Q, Chen S, Long L, Zhou X. Adv. Synth. Catal. 2012; 354: 589
    • 7a Jin J, Wen Q, Lu P, Wang Y. Chem. Commun. 2012; 48: 9933
    • 7b Wen Q, Jin J, Mei Y, Lu P, Wang Y. Eur. J. Org. Chem. 2013; 4032
    • 7c Luo Y, Wen Q, Wu Z, Jin J, Lu P, Wang Y. Tetrahedron 2013; 69: 8400
    • 8a Xu H, Liu P.-T, Li Y.-H, Han F.-S. Org. Lett. 2013; 15: 3354
    • 8b Rong G, Mao J, Zheng Y, Yao R, Xu X. Chem. Commun. 2015; 51: 13822
    • 9a Abuhaie C.-M, Ghinet A, Dubois J, Rigo B, Bîcu E. Bioorg. Med. Chem. Lett. 2013; 23: 5887
    • 9b Lengyel L, Nagy TI, Sipos G, Jones R, Dormán G, Ürge L, Darvas F. Tetrahedron Lett. 2012; 53: 738
    • 9c Görmen M, Goff RL, Lawson AM, Daïch A, Comesse S. Tetrahedron Lett. 2013; 54: 2174
    • 9d El-Gohary NS, Shaaban MI. Eur. J. Med. Chem. 2013; 63: 185
    • 9e Inouye M, Kim K, Kitao T. J. Am. Chem. Soc. 1992; 114: 778
    • 9f Scott JS, deSchoolmeester J, Kilgour E, Mayers RM, Packer MJ, Hargreaves D, Gerhardt S, Ogg DJ, Rees A, Selmi N, Stocker A, Swales JG, Whittamore PR. O. J. Med. Chem. 2012; 55: 10136
  • 10 He H, Qi C, Hu X, Ouyang L, Xiong W, Jiang H. J. Org. Chem. 2015; 80: 4957
    • 11a Sawant DN, Wagh YS, Tambade PJ, Bhatte KD, Bhanage BM. Adv. Synth. Catal. 2011; 353: 781
    • 11b Zhang L, Lu P, Wang Y. Chem. Commun. 2015; 51: 2840
    • 11c Kim J, Choi J, Shin K, Chang S. J. Am. Chem. Soc. 2012; 134: 2528
    • 11d Pawar AB, Chang S. Chem. Commun. 2014; 50: 448
  • 12 Typical Procedure for the Synthesis of Compound 3a To a 25 mL round-bottom flask was added the mixture of boronic acid 1a (0.3 mmol), ethyl 2-cyano-3-ethoxyacrylate (2a, 0.6 mmol), CuI (0.3 mmol), t-BuOOH (0.6 mmol) in DMF (2 mL) successively. The mixture was stirred at 130 °C for 24 h under air. After the reaction was completed, the mixture was cooled to room temperature, diluted with H2O (15 mL), and then extracted with CH2Cl2 (3 × 5 mL). The organic extract was washed with H2O (3 × 10 mL) and dried over anhydrous Na2SO4. After removal of the CH2Cl2 in vacuum, the crude product thus obtained was purified by column chromatography on silica gel using PE–EtOAc as eluent to give the desired product 3a as a white solid; yield 72%; mp: 86–87 °C. 1H NMR (400 MHz, CDCl3): δ = 7.73–7.66 (m, 4 H), 7.59 (d, J = 7.3 Hz, 2 H), 7.51–7.43 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 145.6, 139.0, 132.5, 129.0, 128.6, 127.6, 127.1, 118.8, 110.8. IR (KBr): 2227, 1605, 1484, 1400, 844, 769, 736, 699, 564, 518 cm–1. MS (EI): m/z = 179 (100) [M+], 151, 126, 113, 89, 76, 63.