A. E. COTMAN, D. CAHARD, B. MOHAR* (UNIVERSITY OF LJUBLJANA AND NATIONAL INSTITUTE OF CHEMISTRY, LJUBLJANA, SLOVENIA; UNIVERSITÉ ET INSA DE ROUEN, MONT SAINT AIGNAN, FRANCE)

Stereoarrayed CF₃-Substituted 1,3-Diols by Dynamic Kinetic Resolution: Ruthenium(II)-Catalyzed Asymmetric Transfer Hydrogenation

Angew. Chem. Int. Ed. 2016, 55, 5294-5298.

Ruthenium(II)-Catalyzed Asymmetric Transfer Hydrogenation Reaction

Selected examples:

Significance: In this report, ruthenium-based transfer hydrogenation catalysts are described. The catalysts exhibit impressive turnover numbers with excellent enantioselectivities for the selective reduction of ${\rm CF_3}$ -substituted 1,3-dicarbonyl compounds. The substrates include benzo-fused cyclic ketones which undergo reduction to furnish one stereoisomer.

 SYNFACTS Contributors: Mark Lautens, Alvin Jang

 Synfacts 2016, 12(06), 0589
 Published online: 17.05.2016

 DOI: 10.1055/s-0035-1562190; Reg-No.: L04416SF

Comment: Transfer hydrogenation (TH) reactions are milder and safer alternatives to metal-on-carbon-based hydrogenation reactions. Although the scope is usually limited to the reduction of carbonyls, TH avoids the use of highly pressurized systems. These reported ruthenium-based transfer hydrogenation catalysts are notable achievements in this field.

Category

Metal-Catalyzed Asymmetric Synthesis and Stereoselective Reactions

Key words

transfer hydrogenation

ruthenium catalysis

asymmetric reduction

