Synlett 2016; 27(18): 2616-2620
DOI: 10.1055/s-0035-1562526
letter
© Georg Thieme Verlag Stuttgart · New York

Transition-Metal-Free Direct Arylation and Esterification Reaction of Unprotected Indolylcarboxylic Acid Derivatives: A New Entry to 2-(1H-Indol-2-yl)-5-(phenylthio)-1,3,4-oxadiazoles and Aryl 1H-Indole-2-carboxylates

Dawei Wang*
a   The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, P. R. of China   Email: wangdw@jiangnan.edu.cn
,
Chenyang Ge
a   The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, P. R. of China   Email: wangdw@jiangnan.edu.cn
,
Xin Yu
a   The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, P. R. of China   Email: wangdw@jiangnan.edu.cn
,
Huida Wan
a   The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, P. R. of China   Email: wangdw@jiangnan.edu.cn
,
Xiang Xu*
b   College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. of China   Email: rainerxu@163.com
› Author Affiliations
Further Information

Publication History

Received: 06 May 2016

Accepted after revision: 04 July 2016

Publication Date:
01 August 2016 (online)


Abstract

An efficient, ligand-free, transition-metal-free, direct arylation and esterification reaction of unprotected indolylcarboxylic acid derivatives with diaryliodonium salts was developed, thus providing a new entry to 2-(1H-indol-2-yl)-5-(phenylthio)-1,3,4-oxadiazole and aryl 1H-indole-2-carboxylate derivatives with good yields.

Supporting Information

 
  • References and Notes

    • 1a Olgen S, Nebioglu D. Farmaco 2002; 57: 677
    • 1b Oelgen S, Coban T. Biol. Pharm. Bull. 2003; 26: 736
    • 1c Heindl J, Albrecht R, Loge O, Lehmann M, Kelm HW. DE 3207241, 1983
    • 1d Heindl J, Loge O. EP 62919, 1982
    • 1e Nadzan AM, Lin CW, Kerwin JF. PE 308885, 1989
    • 1f Flouret G, Arnold ZS, Majewski T, Petousis NH, Mahan K, Farooqui F, Blum KA, Konopinska D, Natarajan S, Crich D. J. Pept. Sci. 1995; 1: 89
    • 1g Mochizuki A, Nakamoto Y, Naito H, Uoto K, Ohta T. Bioorg. Med. Chem. Lett. 2008; 18: 782
    • 1h Ohta T, Komoriya S, Yoshino T, Uoto K, Nakamoto Y, Naito H, Mochizuki A, Nagata T, Kanno H, Haginoya N. US 20050020645, 2005
    • 1i Ohta T, Komoriya S, Yoshino T, Uoto K, Nakamoto Y, Naito H, Mochizuki A, Nagata T, Kanno H, Haginoya N. WO 2003000680, 2003
    • 1j Bao Y.-S, Baiyin M, Bao A, Jia M, Bao Z. J. Org. Chem. 2014; 79: 6715
    • 1k Bao Y.-S, Bao Z, Bao A, Baiyin M, Jia M. J. Org. Chem. 2014; 79: 803
    • 1l Narayana B, Ashalatha BV, Raj KK. V, Sarojini BK. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2009; 48: 1794
    • 1m Kaushik D, Khan SA, Chawla G. Eur. J. Med. Chem. 2010; 45: 3960
  • 2 Oelgen S, Coban T. Biol. Pharm. Bull. 2003; 26: 736
  • 3 Takemura M, Ota T, Uoto K, Kawakami K, Yoshino T, Yokomizo Y, Oshikawa K. JP 2004203791, 2004
  • 4 Raju BG, Ciabatti R, Maffioli SI, Singh U, Romano G, Michelucci E, Tiseni PS, Candiani G, Kim B, O’Dowd H. US 20060211603, 2006
    • 5a Vaillard VA, Rossi RA, Martín SE. Org. Biomol. Chem. 2011; 9: 4927
    • 5b Vaillard VA, Guastavino JF, Budén ME, Bardagí JI, Barolo SM, Rossi RA. J. Org. Chem. 2012; 77: 1507
  • 6 Gooßen LJ, Rodríguez N, Gooßen K. Angew. Chem. Int. Ed. 2008; 47: 3100
  • 7 Akiyoshi M, Yumi N, Hiroyuki N, Kouichi U, Toshiharu O. Bioorg. Med. Chem. Lett. 2008; 18: 782
  • 8 Harjani JR, Tang AX, Norton RS, Baell JB. Tetrahedron 2014; 70: 8047
  • 9 Dai J.-J, Liu J.-H, Luo D.-F, Liu L. Chem. Commun. 2011; 47: 677
    • 10a Zhdankin VV, Stang PJ. Chem. Rev. 2008; 108: 5299
    • 10b Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 10c Xiao Z.-C, Xia C.-F. Youji Huaxue 2013; 33: 2119
    • 11a Collins BS. L, Suero MG, Gaunt MJ. Angew. Chem. Int. Ed. 2013; 52: 5799
    • 11b Peng J, Chen C, Wang Y, Lou Z.-B, Li M, Xi C.-J, Chen H. Angew. Chem. Int. Ed. 2013; 52: 7574
    • 11c Guo J, Dong S.-X, Zhang Y.-L, Kuang Y.-L, Liu X.-H, Lin L.-L, Feng X.-M. Angew. Chem. Int. Ed. 2013; 52: 10245
    • 11d Ho JS, Castro LC. M, Aihara Y, Tobisu M, Chatani N. Asian J. Org. Chem. 2014; 3: 48
    • 11e Su X, Chen C, Wang Y, Chen J.-J, Lou Z.-B, Li M. Chem. Commun. 2013; 49: 6752
    • 11f Hu R.-B, Zhang H, Zhang X.-Y, Yang S.-D. Chem. Commun. 2014; 50: 2193
    • 11g Suero MG, Bayle ED, Collins BS. L, Gaunt MJ. J. Am. Chem. Soc. 2013; 135: 5332
    • 11h Xu Q-L, Gao H.-Y, Yousufuddin M, Ess DH, Kurti L. J. Am. Chem. Soc. 2013; 135: 14048
    • 11i Lv T.-Y, Wang Z, You J.-S, Lan J.-B, Gao G. J. Org. Chem. 2013; 78: 5723
    • 11j Wagner AM, Sanford MS. J. Org. Chem. 2014; 79: 2263
    • 11k Umierski N, Manolikakes G. Org. Lett. 2013; 15: 188
    • 11l Gigant N, Boissarie LC, Belhomme MC, Poisson T, Pannecoucke X, Gillaizeau I. Org. Lett. 2013; 15: 278
    • 11m Guo F.-L, Han J.-W, Mao S, Li J, Geng X, Yu J.-J, Wang L.-M. RSC Adv. 2013; 3: 6267
    • 11n Bhong BY, Shelke AV, Karade NN. Tetrahedron Lett. 2013; 54: 739
    • 11o Cullen SC, Shekhar S, Nere NK. J. Org. Chem. 2013; 78: 12194
    • 12a Prakash M, Muthusamy S, Kesavan V. J. Org. Chem. 2014; 79: 7836
    • 12b Li P, Cheng G, Zhang H, Xu X, Gao J, Cui X. J. Org. Chem. 2014; 79: 8156
    • 13a Malmgren J, Nagendiran A, Tai CW, Backvall JE, Olofsson B. Chem. Eur. J. 2014; 20: 13531
    • 13b Petersen TB, Khan R, Olofsson B. Org. Lett. 2011; 13: 3462
  • 14 Zhang F.-Z, Das S, Walkinshaw AJ, Casitas A, Taylor M, Suero MG, Gaunt MJ. J. Am. Chem. Soc. 2014; 136: 8851
  • 15 Modha SG, Greaney MF. J. Am. Chem. Soc. 2015; 137: 1416
  • 16 Matsuzaki K, Okuyama K, Tokunaga E, Saito N, Shiro M, Shibata N. Org. Lett. 2015; 17: 3038
    • 17a Chen J, Chen C, Chen J.-J, Wang G.-H, Qu H.-M. Chem. Commun. 2015; 51: 1356
    • 17b Guo W, Li S.-L, Tang L, Li M, Wen L.-R, Chen C. Org. Lett. 2015; 17: 1232
    • 17c Pang X.-L, Chen C, Su X, Li M, Wen L.-R. Org. Lett. 2014; 16: 6228
  • 18 Jiang H, Cheng Y.-Z, Wang R.-Z, Zhang Y, Yu S.-Y. Chem. Commun. 2014; 50: 6164
  • 19 Bhattarai B, Tay JH, Nagorny P. Chem. Commun. 2015; 51: 5398
  • 20 Iyanaga M, Aihara Y, Chatani N. J. Org. Chem. 2014; 79: 11933
  • 21 Monastyrskyi A, Namelikonda NK, Manetsch R. J. Org. Chem. 2015; 80: 2513
  • 22 Sundalam SK, Stuart DR. J. Org. Chem. 2015; 80: 6456
    • 23a Ichiishi N, Canty AJ, Yates BF, Sanford MS. Organometallics 2014; 33: 5525
    • 23b Kumar D, Pilania M, Arun V, Pooniya S. Org. Biomol. Chem. 2014; 12: 6340
    • 23c Li J, Wang H.-N, Sun J.-T, Yang Y, Liu L. Org. Biomol. Chem. 2014; 12: 7904

      For selected papers from our group, see:
    • 24a Wang D, Ge B, Li L, Shan J, Ding Y. J. Org. Chem. 2014; 79: 8607
    • 24b Wang D, Yu X, Zhao K, Li L, Ding Y. Tetrahedron Lett. 2014; 55: 5739
    • 24c Wang D, Zhao K, Xu C, Miao H, Ding Y. ACS Catal. 2014; 4: 3910
    • 24d Chen J, Zhao K, Ge B, Xu C, Wang D, Ding Y. Chem. Asian J. 2015; 10: 468
    • 24e Wang D, Yu X, Yao W, Hu W, Ge C, Shi X. Chem. Eur. J. 2016; 22: 5543
    • 24f Yang Y, Qin A, Zhao K, Wang D, Shi X. Adv. Synth. Catal. 2016; 358: 1443
    • 24g Wang D, Yu X, Xu X, Ge B, Wang X, Zhang Y. Chem. Eur. J. 2016; 22: 8663
    • 25a Miller WH. WO 2001027103, 2001
    • 25b An J, Chang N.-J, Song L.-D, Jin Y.-Q, Ma Y, Chen JR, Xiao W.-J. Chem. Commun. 2011; 47: 1869
    • 26a Bao Y.-S, Baiyin M, Agula B, Jia M, Zhaorigetu B. J. Org. Chem. 2014; 79: 6715
    • 26b Bissantz C. WO 2007009906, 2007
    • 26c Brooks G, Hunt E. WO 2000037074, 2000
    • 26d Boatman RJ, Whitlock HW. J. Org. Chem. 1976; 41: 3050
  • 27 Neagoie C, Vedrenne E, Buron F, Mérour J.-Y, Rosca S, Bourg S, Lozach O, Meijer L, Baldeyrou B, Lansiaux A, Routier S. Eur. J. Med. Chem. 2012; 49: 379
    • 28a Malmgren J, Santoro S, Jalalian N, Himo F, Olofsson B. Chem. Eur. J. 2013; 19: 10334
    • 28b de Magalhāes HP, Lüthi HP, Togni A. Org. Lett. 2012; 14: 3830
  • 29 Typical Procedure for the Synthesis of 3a Ph2IOTf (0.6 mmol) and toluene (2 mL) were stirred in a Schlenk tube at room temperature for a moment. Subsequently, 1H-indole-2-carboxylic acid (1a, 0.5 mmol) and K2CO3 (0.75 mmol) was added. The mixture was heated under 130 °C for 12 h and then cooled to room temperature. The resulting solution was directly purified by column chromatography with PE–EtOAc (5:1) as eluent to give phenyl 1H-indene-2-carboxylate (3a) as a yellow solid in 84% yield. 1H NMR (600 MHz, CDCl3): δ = 9.42 (s, 1 H), 7.77 (d, J = 8.0 Hz, 1 H), 7.48 (d, J = 8.2 Hz, 3 H), 7.39–7.33 (m, 3 H), 7.31–7.26 (m, 2 H), 7.21 (m, 1 H). 13C NMR (151 MHz, CDCl3): δ = 160.77, 150.45, 137.42, 129.56, 127.37, 126.31, 126.10, 125.88, 122.77, 121.71, 121.01, 112.12, 110.27.