Semin Neurol 2015; 35(05): 578-586
DOI: 10.1055/s-0035-1563574
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Therapeutic Approaches to Inherited Optic Neuropathies

Patrick Yu-Wai-Man
1   Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
2   Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
3   NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
› Author Affiliations
Further Information

Publication History

Publication Date:
06 October 2015 (online)

Abstract

As a group, inherited optic neuropathies represent an important cause of severe irreversible visual loss among children and young adults. Leber hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (DOA) are the two most common forms encountered in clinical practice and several shared disease pathways have emerged that contribute to retinal ganglion cell loss, and eventually visual failure. In this review, the author critically appraises the evidence base for the various therapeutic strategies that have been put forward to treat these two mitochondrially determined optic neuropathies, including future developments. Innovative in vitro fertilization techniques to prevent female carriers of childbearing age from transmitting pathogenic mitochondrial DNA mutations to their biological children will also be discussed.

 
  • References

  • 1 Yu-Wai-Man P, Griffiths PG, Chinnery PF. Mitochondrial optic neuropathies - disease mechanisms and therapeutic strategies. Prog Retin Eye Res 2011; 30 (2) 81-114
  • 2 Man PYW, Griffiths PG, Brown DT, Howell N, Turnbull DM, Chinnery PF. The epidemiology of Leber hereditary optic neuropathy in the North East of England. Am J Hum Genet 2003; 72 (2) 333-339
  • 3 Fraser JA, Biousse V, Newman NJ. The neuro-ophthalmology of mitochondrial disease. Surv Ophthalmol 2010; 55 (4) 299-334
  • 4 Harding AE, Sweeney MG, Miller DH , et al. Occurrence of a multiple sclerosis-like illness in women who have a Leber's hereditary optic neuropathy mitochondrial DNA mutation. Brain 1992; 115 (Pt 4) 979-989
  • 5 Pfeffer G, Burke A, Yu-Wai-Man P, Compston DAS, Chinnery PF. Clinical features of MS associated with Leber hereditary optic neuropathy mtDNA mutations. Neurology 2013; 81 (24) 2073-2081
  • 6 Carelli V, Ross-Cisneros FN, Sadun AA. Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retin Eye Res 2004; 23 (1) 53-89
  • 7 Yu-Wai-Man P, Griffiths PG, Hudson G, Chinnery PF. Inherited mitochondrial optic neuropathies. J Med Genet 2009; 46 (3) 145-158
  • 8 Kirkman MA, Yu-Wai-Man P, Korsten A , et al. Gene-environment interactions in Leber hereditary optic neuropathy. Brain 2009; 132 (Pt 9) 2317-2326
  • 9 Mackey DA, Oostra RJ, Rosenberg T , et al. Primary pathogenic mtDNA mutations in multigeneration pedigrees with Leber hereditary optic neuropathy. Am J Hum Genet 1996; 59 (2) 481-485
  • 10 Stone EM, Newman NJ, Miller NR, Johns DR, Lott MT, Wallace DC. Visual recovery in patients with Leber's hereditary optic neuropathy and the 11778 mutation. J Clin Neuroophthalmol 1992; 12 (1) 10-14
  • 11 Johns DR, Smith KH, Miller NR. Leber's hereditary optic neuropathy. Clinical manifestations of the 3460 mutation. Arch Ophthalmol 1992; 110 (11) 1577-1581
  • 12 Johns DR, Heher KL, Miller NR, Smith KH. Leber's hereditary optic neuropathy. Clinical manifestations of the 14484 mutation. Arch Ophthalmol 1993; 111 (4) 495-498
  • 13 Yu-Wai-Man P, Chinnery PF. Dominant optic atrophy: Novel OPA1 mutations and revised prevalence estimates. Ophthalmology 2013; 120 (8) 1712-1712.e1
  • 14 Cohn AC, Toomes C, Hewitt AW , et al. The natural history of OPA1-related autosomal dominant optic atrophy. Br J Ophthalmol 2008; 92 (10) 1333-1336
  • 15 Yu-Wai-Man P, Bailie M, Atawan A, Chinnery PF, Griffiths PG. Pattern of retinal ganglion cell loss in dominant optic atrophy due to OPA1 mutations. Eye (Lond) 2011; 25 (5) 596-602
  • 16 Ito Y, Nakamura M, Yamakoshi T, Lin J, Yatsuya H, Terasaki H. Reduction of inner retinal thickness in patients with autosomal dominant optic atrophy associated with OPA1 mutations. Invest Ophthalmol Vis Sci 2007; 48 (9) 4079-4086
  • 17 Votruba M, Moore AT, Bhattacharya SS. Clinical features, molecular genetics, and pathophysiology of dominant optic atrophy. J Med Genet 1998; 35 (10) 793-800
  • 18 Yu-Wai-Man P, Shankar SP, Biousse V , et al. Genetic screening for OPA1 and OPA3 mutations in patients with suspected inherited optic neuropathies. Ophthalmology 2011; 118 (3) 558-563
  • 19 Delettre C, Lenaers G, Griffoin JM , et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 2000; 26 (2) 207-210
  • 20 Alexander C, Votruba M, Pesch UEA , et al. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 2000; 26 (2) 211-215
  • 21 Ferré M, Bonneau D, Milea D , et al. Molecular screening of 980 cases of suspected hereditary optic neuropathy with a report on 77 novel OPA1 mutations. Hum Mutat 2009; 30 (7) E692-E705
  • 22 Amati-Bonneau P, Guichet A, Olichon A , et al. OPA1 R445H mutation in optic atrophy associated with sensorineural deafness. Ann Neurol 2005; 58 (6) 958-963
  • 23 Hudson G, Amati-Bonneau P, Blakely EL , et al. Mutation of OPA1 causes dominant optic atrophy with external ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: a novel disorder of mtDNA maintenance. Brain 2008; 131 (Pt 2) 329-337
  • 24 Amati-Bonneau P, Valentino ML, Reynier P , et al. OPA1 mutations induce mitochondrial DNA instability and optic atrophy ‘plus’ phenotypes. Brain 2008; 131 (Pt 2) 338-351
  • 25 Yu-Wai-Man P, Griffiths PG, Gorman GS , et al. Multi-system neurological disease is common in patients with OPA1 mutations. Brain 2010; 133 (Pt 3) 771-786
  • 26 Carelli V, La Morgia C, Valentino ML, Barboni P, Ross-Cisneros FN, Sadun AA. Retinal ganglion cell neurodegeneration in mitochondrial inherited disorders. Biochim Biophys Acta 2009; 1787 (5) 518-528
  • 27 Lodi R, Taylor DJ, Tabrizi SJ , et al. In vivo skeletal muscle mitochondrial function in Leber's hereditary optic neuropathy assessed by 31P magnetic resonance spectroscopy. Ann Neurol 1997; 42 (4) 573-579
  • 28 Lodi R, Carelli V, Cortelli P , et al. Phosphorus MR spectroscopy shows a tissue specific in vivo distribution of biochemical expression of the G3460A mutation in Leber's hereditary optic neuropathy. J Neurol Neurosurg Psychiatry 2002; 72 (6) 805-807
  • 29 Zanna C, Ghelli A, Porcelli AM , et al. OPA1 mutations associated with dominant optic atrophy impair oxidative phosphorylation and mitochondrial fusion. Brain 2008; 131 (Pt 2) 352-367
  • 30 Yu-Wai-Man P, Trenell MI, Hollingsworth KG, Griffiths PG, Chinnery PF. OPA1 mutations impair mitochondrial function in both pure and complicated dominant optic atrophy. Brain 2011; 134 (Pt 4) e164
  • 31 Lodi R, Tonon C, Valentino ML , et al. Defective mitochondrial adenosine triphosphate production in skeletal muscle from patients with dominant optic atrophy due to OPA1 mutations. Arch Neurol 2011; 68 (1) 67-73
  • 32 Agier V, Oliviero P, Lainé J , et al. Defective mitochondrial fusion, altered respiratory function, and distorted cristae structure in skin fibroblasts with heterozygous OPA1 mutations. Biochim Biophys Acta 2012; 1822 (10) 1570-1580
  • 33 Beretta S, Mattavelli L, Sala G , et al. Leber hereditary optic neuropathy mtDNA mutations disrupt glutamate transport in cybrid cell lines. Brain 2004; 127 (Pt 10) 2183-2192
  • 34 Beretta S, Wood JPM, Derham B , et al. Partial mitochondrial complex I inhibition induces oxidative damage and perturbs glutamate transport in primary retinal cultures. Relevance to Leber Hereditary Optic Neuropathy (LHON). Neurobiol Dis 2006; 24 (2) 308-317
  • 35 Sala G, Trombin F, Beretta S , et al. Antioxidants partially restore glutamate transport defect in leber hereditary optic neuropathy cybrids. J Neurosci Res 2008; 86 (15) 3331-3337
  • 36 Lin CS, Sharpley MS, Fan W , et al. Mouse mtDNA mutant model of Leber hereditary optic neuropathy. Proc Natl Acad Sci U S A 2012; 109 (49) 20065-20070
  • 37 Yarosh W, Monserrate J, Tong JJ , et al. The molecular mechanisms of OPA1-mediated optic atrophy in Drosophila model and prospects for antioxidant treatment. PLoS Genet 2008; 4 (1) e6
  • 38 Tang S, Le PK, Tse S, Wallace DC, Huang T. Heterozygous mutation of Opa1 in Drosophila shortens lifespan mediated through increased reactive oxygen species production. PLoS ONE 2009; 4 (2) e4492
  • 39 Burte F, Carelli V, Chinnery PF, Yu-Wai-Man P. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat Rev Neurol 2015; 11 (1) 11-24
  • 40 Trevelyan AJ, Kirby DM, Smulders-Srinivasan TK , et al. Mitochondrial DNA mutations affect calcium handling in differentiated neurons. Brain 2010; 133 (Pt 3) 787-796
  • 41 Dayanithi G, Chen-Kuo-Chang M, Viero C, Hamel C, Muller A, Lenaers G. Characterization of Ca2+ signalling in postnatal mouse retinal ganglion cells: involvement of OPA1 in Ca2+ clearance. Ophthalmic Genet 2010; 31 (2) 53-65
  • 42 Chevrollier A, Guillet V, Loiseau D , et al. Hereditary optic neuropathies share a common mitochondrial coupling defect. Ann Neurol 2008; 63 (6) 794-798
  • 43 Cipolat S, Rudka T, Hartmann D , et al. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 2006; 126 (1) 163-175
  • 44 Frezza C, Cipolat S, Martins de Brito O , et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 2006; 126 (1) 177-189
  • 45 Williams PA, Morgan JE, Votruba M. Opa1 deficiency in a mouse model of dominant optic atrophy leads to retinal ganglion cell dendropathy. Brain 2010; 133 (10) 2942-2951
  • 46 Williams PA, Piechota M, von Ruhland C, Taylor E, Morgan JE, Votruba M. Opa1 is essential for retinal ganglion cell synaptic architecture and connectivity. Brain 2012; 135 (Pt 2) 493-505
  • 47 Stewart JD, Hudson G, Yu-Wai-Man P , et al. OPA1 in multiple mitochondrial DNA deletion disorders. Neurology 2008; 71 (22) 1829-1831
  • 48 Elachouri G, Vidoni S, Zanna C , et al. OPA1 links human mitochondrial genome maintenance to mtDNA replication and distribution. Genome Res 2011; 21 (1) 12-20
  • 49 Yu-Wai-Man P, Sitarz KS, Samuels DC , et al. OPA1 mutations cause cytochrome c oxidase deficiency due to loss of wild-type mtDNA molecules. Hum Mol Genet 2010; 19 (15) 3043-3052
  • 50 Payne BAI, Wilson IJ, Yu-Wai-Man P , et al. Universal heteroplasmy of human mitochondrial DNA. Hum Mol Genet 2013; 22 (2) 384-390
  • 51 Greaves LC, Yu-Wai-Man P, Blakely EL , et al. Mitochondrial DNA defects and selective extraocular muscle involvement in CPEO. Invest Ophthalmol Vis Sci 2010; 51 (7) 3340-3346
  • 52 Vidoni S, Zanna C, Rugolo M, Sarzi E, Lenaers G. Why mitochondria must fuse to maintain their genome integrity. Antioxid Redox Signal 2013; 19 (4) 379-388
  • 53 Andrews RM, Griffiths PG, Johnson MA, Turnbull DM. Histochemical localisation of mitochondrial enzyme activity in human optic nerve and retina. Br J Ophthalmol 1999; 83 (2) 231-235
  • 54 Barron MJ, Griffiths P, Turnbull DM, Bates D, Nichols P. The distributions of mitochondria and sodium channels reflect the specific energy requirements and conduction properties of the human optic nerve head. Br J Ophthalmol 2004; 88 (2) 286-290
  • 55 Sadun AA, Win PH, Ross-Cisneros FN, Walker SO, Carelli V. Leber's hereditary optic neuropathy differentially affects smaller axons in the optic nerve. Trans Am Ophthalmol Soc 2000; 98: 223-232 , discussion 232–235
  • 56 Pan BX, Ross-Cisneros FN, Carelli V , et al. Mathematically modeling the involvement of axons in Leber's hereditary optic neuropathy. Invest Ophthalmol Vis Sci 2012; 53 (12) 7608-7617
  • 57 La Morgia C, Ross-Cisneros FN, Sadun AA , et al. Melanopsin retinal ganglion cells are resistant to neurodegeneration in mitochondrial optic neuropathies. Brain 2010; 133 (Pt 8) 2426-2438
  • 58 Bremner FD, Shallo-Hoffmann J, Riordan-Eva P, Smith SE. Comparing pupil function with visual function in patients with Leber's hereditary optic neuropathy. Invest Ophthalmol Vis Sci 1999; 40 (11) 2528-2534
  • 59 Bremner FD, Tomlin EA, Shallo-Hoffmann J, Votruba M, Smith SE. The pupil in dominant optic atrophy. Invest Ophthalmol Vis Sci 2001; 42 (3) 675-678
  • 60 Kirkman MA, Korsten A, Leonhardt M , et al. Quality of life in patients with leber hereditary optic neuropathy. Invest Ophthalmol Vis Sci 2009; 50 (7) 3112-3115
  • 61 Bailie M, Votruba M, Griffiths PG, Chinnery PF, Yu-Wai-Man P. Visual and psychological morbidity among patients with autosomal dominant optic atrophy. Acta Ophthalmol (Copenh) 2013; 91 (5) e413-e414
  • 62 Dotti MT, Plewnia K, Cardaioli E , et al. A case of ethambutol-induced optic neuropathy harbouring the primary mitochondrial LHON mutation at nt 11778. J Neurol 1998; 245 (5) 302-303
  • 63 Sanchez RN, Smith AJ, Carelli V, Sadun AA, Keltner JL. Leber hereditary optic neuropathy possibly triggered by exposure to tire fire. J Neuroophthalmol 2006; 26 (4) 268-272
  • 64 Pfeffer G, Horvath R, Klopstock T , et al. New treatments for mitochondrial disease-no time to drop our standards. Nat Rev Neurol 2013; 9 (8) 474-481
  • 65 Yu-Wai-Man P, Votruba M, Moore AT, Chinnery PF. Treatment strategies for inherited optic neuropathies: past, present and future. Eye (Lond) 2014; 28 (5) 521-537
  • 66 Haefeli RH, Erb M, Gemperli AC , et al. NQO1-dependent redox cycling of idebenone: effects on cellular redox potential and energy levels. PLoS ONE 2011; 6 (3) e17963
  • 67 Heitz FD, Erb M, Anklin C, Robay D, Pernet V, Gueven N. Idebenone protects against retinal damage and loss of vision in a mouse model of Leber's hereditary optic neuropathy. PLoS ONE 2012; 7 (9) e45182
  • 68 Gueven N, Faldu D. Idebenone treatment in Leber's hereditary optic neuropathy: rationale and efficacy. Exp Opin Orph Drugs 2013; 1 (4) 331-339
  • 69 Sadun AA, Chicani CF, Ross-Cisneros FN , et al. Effect of EPI-743 on the clinical course of the mitochondrial disease Leber hereditary optic neuropathy. Arch Neurol 2012; 69 (3) 331-338
  • 70 Klopstock T, Yu-Wai-Man P, Dimitriadis K , et al. A randomized placebo-controlled trial of idebenone in Leber's hereditary optic neuropathy. Brain 2011; 134 (Pt 9) 2677-2686
  • 71 Klopstock T, Metz G, Yu-Wai-Man P , et al. Persistence of the treatment effect of idebenone in Leber's hereditary optic neuropathy. Brain 2013; 136 (Pt 2) e230
  • 72 Carelli V, La Morgia C, Valentino ML , et al. Idebenone treatment in Leber's hereditary optic neuropathy. Brain 2011; 134 (Pt 9, e188): e188
  • 73 Newman NJ. Treatment of Leber hereditary optic neuropathy. Brain 2011; 134 (Pt 9) 2447-2450
  • 74 Barboni P, Valentino ML, La Morgia C , et al. Idebenone treatment in patients with OPA1-mutant dominant optic atrophy. Brain 2013; 136 (Pt 2) e231
  • 75 Giordano C, Iommarini L, Giordano L , et al. Efficient mitochondrial biogenesis drives incomplete penetrance in Leber's hereditary optic neuropathy. Brain 2014; 137 (Pt 2) 335-353
  • 76 Hirano M. Weighing in on Leber hereditary optic neuropathy: effects of mitochondrial mass. Brain 2014; 137 (Pt 2) 308-309
  • 77 Giordano C, Montopoli M, Perli E , et al. Oestrogens ameliorate mitochondrial dysfunction in Leber's hereditary optic neuropathy. Brain 2011; 134 (Pt 1) 220-234
  • 78 Wong A, Cortopassi G. mtDNA mutations confer cellular sensitivity to oxidant stress that is partially rescued by calcium depletion and cyclosporin A. Biochem Biophys Res Commun 1997; 239 (1) 139-145
  • 79 Qi X, Sun L, Lewin AS, Hauswirth WW, Guy J. The mutant human ND4 subunit of complex I induces optic neuropathy in the mouse. Invest Ophthalmol Vis Sci 2007; 48 (1) 1-10
  • 80 Guy J, Qi X, Pallotti F , et al. Rescue of a mitochondrial deficiency causing Leber Hereditary Optic Neuropathy. Ann Neurol 2002; 52 (5) 534-542
  • 81 Guy J, Qi X, Koilkonda RD , et al. Efficiency and safety of AAV-mediated gene delivery of the human ND4 complex I subunit in the mouse visual system. Invest Ophthalmol Vis Sci 2009; 50 (9) 4205-4214
  • 82 Ellouze S, Augustin S, Bouaita A , et al. Optimized allotopic expression of the human mitochondrial ND4 prevents blindness in a rat model of mitochondrial dysfunction. Am J Hum Genet 2008; 83 (3) 373-387
  • 83 Cwerman-Thibault H, Augustin S, Ellouze S, Sahel J-A, Corral-Debrinski M. Gene therapy for mitochondrial diseases: Leber Hereditary Optic Neuropathy as the first candidate for a clinical trial. C R Biol 2014; 337 (3) 193-206
  • 84 Lam BL, Feuer WJ, Schiffman JC , et al. Trial end points and natural history in patients with G11778A Leber hereditary optic neuropathy: preparation for gene therapy clinical trial. JAMA Ophthalmol 2014; 132 (4) 428-436
  • 85 Davies VJ, Hollins AJ, Piechota MJ , et al. Opa1 deficiency in a mouse model of autosomal dominant optic atrophy impairs mitochondrial morphology, optic nerve structure and visual function. Hum Mol Genet 2007; 16 (11) 1307-1318
  • 86 Yu-Wai-Man P, Davies VJ, Piechota MJ, Cree LM, Votruba M, Chinnery PF. Secondary mtDNA defects do not cause optic nerve dysfunction in a mouse model of dominant optic atrophy. Invest Ophthalmol Vis Sci 2009; 50 (10) 4561-4566
  • 87 Alavi MV, Bette S, Schimpf S , et al. A splice site mutation in the murine Opa1 gene features pathology of autosomal dominant optic atrophy. Brain 2007; 130 (Pt 4) 1029-1042
  • 88 Alavi MV, Fuhrmann N, Nguyen HP , et al. Subtle neurological and metabolic abnormalities in an Opa1 mouse model of autosomal dominant optic atrophy. Exp Neurol 2009; 220 (2) 404-409
  • 89 Sarzi E, Angebault C, Seveno M , et al. The human OPA1delTTAG mutation induces premature age-related systemic neurodegeneration in mouse. Brain 2012; 135 (Pt 12) 3599-3613
  • 90 Dahlmann-Noor A, Vijay S, Jayaram H, Limb A, Khaw PT. Current approaches and future prospects for stem cell rescue and regeneration of the retina and optic nerve. Can J Ophthalmol 2010; 45 (4) 333-341
  • 91 Limb GA, Martin KR ; Sixth ARVO/Pfizer Ophthalmics Research Institute Conference Working Group. Current prospects in optic nerve protection and regeneration: sixth ARVO/Pfizer Ophthalmics Research Institute conference. Invest Ophthalmol Vis Sci 2011; 52 (8) 5941-5954
  • 92 Johnson TV, Bull ND, Hunt DP, Marina N, Tomarev SI, Martin KR. Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma. Invest Ophthalmol Vis Sci 2010; 51 (4) 2051-2059
  • 93 Johnson TV, Martin KR. Cell transplantation approaches to retinal ganglion cell neuroprotection in glaucoma. Curr Opin Pharmacol 2013; 13 (1) 78-82
  • 94 Connick P, Kolappan M, Crawley C , et al. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol 2012; 11 (2) 150-156
  • 95 Cohn AC, Toomes C, Potter C , et al. Autosomal dominant optic atrophy: penetrance and expressivity in patients with OPA1 mutations. Am J Ophthalmol 2007; 143 (4) 656-662
  • 96 Yu-Wai-Man P, Griffiths PG, Burke A , et al. The prevalence and natural history of dominant optic atrophy due to OPA1 mutations. Ophthalmology 2010; 117 (8) 1538-1546 , 1546.e1
  • 97 Gorman GS, Grady JP, Ng Y , et al. Mitochondrial donation—how many women could benefit?. N Engl J Med 2015; 372 (9) 885-887
  • 98 Chinnery PF, Andrews RM, Turnbull DM, Howell NN. Leber hereditary optic neuropathy: Does heteroplasmy influence the inheritance and expression of the G11778A mitochondrial DNA mutation?. Am J Med Genet 2001; 98 (3) 235-243
  • 99 Tachibana M, Sparman M, Sritanaudomchai H , et al. Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature 2009; 461 (7262) 367-372
  • 100 Craven L, Tuppen HA, Greggains GD , et al. Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature 2010; 465 (7294) 82-85