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When the vesselwall ruptures during injury or cardiovascular
events, platelets are the first to arrive on the scene. These
platelets are guided to the damaged vessel wall by von
Willebrand factor (VWF), which acts as molecular velcro.
The multimeric state and conformation of VWF are key to
its platelet-binding properties and enable platelets to bind to
exposed subendothelium under the strong shear forces of
flowing blood.1 The platelet-binding properties of VWF need
to be kept under constant control to prevent spontaneous
intravascular platelet clustering, which can have dramatic
pathologic consequences. When intravascular platelet clus-
tering goes unchecked at sites of high shear forces, the
microvasculature can become occluded by microthrombi.2

Subsequently, organs rich in microvessels can become ische-
mic and damaged. The disease thrombotic thrombocytopenic
purpura (TTP) is associated with waves of promiscuous
platelet-clustering activity of VWF. These attacks of TTP are
accompanied by hemolytic anemia and thrombocytopenia.

ADAMTS13

The principal enzyme responsible for controlling the platelet-
binding properties of VWF is ADAMTS13 (a disintegrin and
metalloproteinase with a thrombospondin type I motif,
member 13). Before its identification, it was reported that a
VWF-cleaving enzyme is constitutively active in plasma.3 This
enzyme cleaves VWF in its A2 domain at a Tyr1605-Met1606
bond (numbering includes the VWF propeptide, relating to
positions 842–843 in mature VWF monomers). The VWF-
cleaving capacity of this enzyme is dependent on metal-ions
and promoted by conformational changes in VWF. In its
globular form, VWF is resistant to proteolysis, while unfold-
ing facilitates cleavage.4 Later studies identified this enzyme
as ADAMTS13.5,6 The molecular mechanisms by which
ADAMTS13 interacts with VWF to induce cleavage have
been investigated in great detail and show us a unique,
elegant, and tightly regulated process.7 After VWF undergoes
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Abstract Von Willebrand factor (VWF) is one of the most important proteins of the hemostatic
system. Its multimeric state is essential for its natural function to guide platelets to sites
of injury. ADAMTS13 is the key protease that regulates the multimeric state of VWF.
Without ADAMTS13, VWFmultimers can grow to pathologically large sizes. This is a risk
factor for the life-threatening condition thrombotic thrombocytopenic purpura (TTP).
In this condition, VWF-rich thrombi occlude the microvasculature of various tissues.
Intriguingly, a complete ADAMTS13 deficiency does not cause continuous TTP, either in
patients or genetically targeted mice. Instead, TTP occurs in episodes of disease,
separated by extended periods of remission. This indicates that regulating factors
beyond ADAMTS13 are likely involved in this pathologic cascade of events. This raises
the question of what really happens when ADAMTS13 is (temporarily) unavailable. In
this review, we explore the possible role of complementary mechanisms that are
capable of modifying the thrombogenic potential of VWF.
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its conformational changes, ADAMTS13 binds to its substrate
in multiple steps, positioning itself with high precision for
cleavage of the Tyr1605-Met1606 scissile bond.

Thrombotic Thrombocytopenic Purpura

Lowered or absent ADAMTS13 activity can result in circulatingVWF
multimers that are unusually large. These VWF multimers are
capable of spontaneous platelet recruitment in the circulation,
especially under conditions of high shear. This can ultimately lead
to the clinical syndrome of TTP. Reduced ADAMTS13 activity can be
caused by a rare genetic deficiency (Upshaw-Shulman syndrome)
but is more often the result of inhibitory autoantibodies (acquired
TTP). TTP attacks are characterized by hemolytic anemia and
thrombocytopenia, and are often accompanied by neurologic
abnormalities, fever, and renal failure (although involvement of
kidneys is less than inother formsof thromboticmicroangiopathy2).
The obstructivemicrothrombi are held responsible for these diverse
pathologic features. If left untreated, TTP leads to organ failure with
lethal consequences in the large majority of cases.

Plasma exchange and immunosuppressive therapy are
valuable in TTP caused by an acquired ADAMTS13 deficiency.
However, exciting developments may lead to more therapeu-
tic options in the near future. First, recombinant forms of
ADAMTS13 are currently under development,8,9 some of
which are resistant against neutralizing autoantibodies.10

The common aim of these therapies is to restore ADAMTS13
activity in patients, which, in turn, should facilitate cleavage
of VWF to destroy VWF-rich microthrombi. Furthermore,
there is evidence that VWF multimer size can be pharmaco-
logically targeted with N-acetylcysteine (NAC). This Food and
Drug Administration (FDA)–approved drug is (among others)
useful for treatment of acetaminophen toxicity and chronic
obstructive lung disease. Interestingly, NAC has been shown
to be able to reduce disulfide bonds in VWF, reducing size and
activity of VWF multimers. Case reports on the treatment of
TTP with NAC describe varying outcomes.11,12 A clinical trial
is currently ongoing to test its efficacy under controlled
conditions (ClinicalTrials.gov Identifier: NCT01808521).
Finally, baboon experiments previously demonstrated that
inhibition of the platelet GPIb–VWF interaction with a nano-
body (camelid single-chain antibody) is an effective and safe
strategy for managing acquired TTP.13,14 A clinical trial has
been performed (TITAN Trial; ClinicalTrials.gov Identifier:
NCT01151423) to investigate the therapeutic potential of
VWF-targeting nanobody caplacizumab (ALX-0681) in con-
junction with plasma exchange for treatment of TTP.15 The
first published results from this trial are very promising:
nanobody treatment reduces the time to platelet count
normalization and reduces the need for plasma exchange.16

The Mysterious Erratic Nature of TTP

Lessons from Patients
During attacks of acquired TTP, ADAMTS13 activity is gener-
ally lower than it is during remission in the same patients.17

Variations in autoantibody levels may help explain this
variation in ADAMTS13 activity: when autoantibody titers

against ADAMTS13 are high, its activity decreases.18 Based on
the attack/remission clinical phenotype seen in TTP, it is
attractive to hypothesize that ADAMTS13 activity levels
need to remain above a threshold for the maintenance of a
healthy perfusion of the microvasculature and prevention of
TTP.19 However, several lines of evidence argue against this
concept: (1) patients with acquired TTP can have undetect-
able ADAMTS13 activity while being in remission and (2)
patients with congenital ADAMTS13 do not experience
continuously ongoing TTP but develop attacks of TTP in a
pattern that closely resembles that of acquired TTP patients.
Indeed, despite their complete congenital ADAMTS13 defi-
ciency, such patients can remain completely asymptomatic
for years.20–22

Lessons from Mouse Models
The findings from congenital ADAMTS13-deficient patients
have been corroborated in congenitally deficient ADAMTS13-
deficient mice: these mice also do not spontaneously develop
symptoms of TTP nor experience continuous thrombotic
microangiopathy.23 They only develop features that approxi-
mate TTP after exposure to pathogenic toxins,23 or after
injection with large amounts of recombinant multimeric
VWF.9 Intriguingly, congenital ADAMTS13 deficiency alone
is not sufficient to increase the susceptibility of thesemice for
these triggers. TTP-like symptoms mainly develop in
ADAMTS13-deficient mice with a very specific genetic back-
ground (i.e., CASA/Rk), but not in ADAMTS13 deficient mice
with other genetic backgrounds. This strongly indicates that
additional genetic risk factors modulate the capacity of these
mice to develop TTP-like symptoms. Although this strain
produces more VWF than the other strains, this is not held
responsible for the heightened sensitivity of these mice to
develop TTP-like symptoms.23 The identification of additional
genetic risk factors in the CASA/Rk strainmay have significant
impact on our understanding of TTP.

These combined observations from humanTTP patients, as
well asmice, strongly suggest that ADAMTS13 deficiency is an
important risk factor for the development of TTP. However, it
is also clear that additional factors modulate the disease
phenotype.

A Second Hit for TTP

As ADAMTS13 deficiency alone cannot explain the onset of all
TTP attacks, it is probable that a triggering event is needed. It
is attractive to hypothesize that an infection constitutes this
trigger. In the case of Shiga toxin–mediated hemolytic uremic
syndrome (ST-HUS), another form of thrombotic microangi-
opathy, the responsible pathogens have been identified.
These are Shigella dysenteriae type 1 and certain strains of
Escherichia coli, which produce shigatoxin.24 Exposure to
these pathogens via food intake can trigger severe thrombotic
microangiopathy, independent of ADAMTS13 activity. On a
macroscopic level, ST-HUS is clinically more commonly asso-
ciated with acute kidney injury than TTP.2 On a microscopic
level, analyses of the composition of obstructive micro-
thrombi reveal the involvement of fibrin in ST-HUS, whereas
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microthrombi in TTP are (enigmatically) fibrin-poor.25 These
differences between ST-HUS and TTP suggest that, if there is a
pathogen is responsible for triggering TTP, it may be different
from the pathogens that cause ST-HUS.

There is scientific evidence that links infection to TTP:
recent studies showed that acute TTP attacks are associated
with elevated levels of circulating DNA-histone complexes, as
well as other components that can be traced back to release by
neutrophils.26 These neutrophil-derived components are
able to trap bacterial pathogens and assist in their destruc-
tion27 and were originally discovered in severe bacterial
septicemia.28 Their identification in TTP leads to the attrac-
tive hypothesis that these DNA-histone complexes, rather
than the underlying infection, constitute the second hit that
elicits an attack. However, are the DNA-histone complexes
that are seen in TTP really caused by infection or are they a
consequence of thrombotic microangiopathy? This same
study shows neutrophil-released components in several
other forms of thrombotic microangiopathy (unrelated to
ADAMTS13 deficiency).26 Furthermore, neutrophil release
products have been reported in a variety of prothrombotic
states that are not directly linked to infection,29–33 and are
released during ex vivo storage of red blood cells.34 TTP
attacks are often associated with hemolytic anemia, resulting
from shear-related cellular damage to red blood cells at sites
of vascular occlusions. It is attractive to speculate that in TTP
neutrophils undergo a fate that is similar to that of eryth-
rocytes, resulting in the release of their contents in a shear-
related, but infection-unrelated, manner. This process, in
turn, could worsen TTP symptoms by providing a “second
hit” that reinforces microthrombosis.35

Assistance for ADAMTS13 to Keep VWF
Activity “Under Control”

It is evident that ADAMTS13 is a central physiologic regulator
of VWFmultimer size in blood. However, is it also certain that
ADAMTS13 is the only protein that regulates the thromboge-
nicity of VWF? The proverb “Amicus certus in re incerta
cernitur” by the roman poet Quintus Ennius (239 BC–c. 169
BC: http://en.wikipedia.org/wiki/Ennius) can be popularly
translated as “A friend in need is a friend indeed.” The
observation that congenital ADAMTS13-deficient persons
and mice can be symptom free for extended periods of
time suggests that ADAMTS13 may get help to keep VWF
activity under control.

The Complement System
In complement-mediated thrombotic microangiopathy,
excessive activation of the complement system leads to
thrombus formation. Mutations in factors H and I, which
together control the alternative pathway of the comple-
ment system, are associated with this disease.36,37 The
complement system influences VWF release and function
on multiple levels. First, unregulated formation of mem-
brane-attack complexes causes endothelial cell damage and
platelet activation. This can trigger VWF release, whichmay
contribute to microthrombosis. Second, endothelial-cell

tethered platelet-VWF complexes can recruit and activate
components of the alternative complement pathway.38

Under normal conditions, this is kept under tight control
by factors I and H (which can directly bind to VWF).38,39

Third, factor H may directly influence the cleavage of VWF
by ADAMTS13. A recent study showed that factor H enhan-
ces the cleavage of soluble VWF by ADAMTS13,39 while
another study showed that VWF cleavage by ADAMTS13
was inhibited by factor H on the surface of endothelial
cells.40

Finally, detailed biochemical studies identified a direct
influence of factor H on VWF that is unrelated to its role in the
complement system: factor H directly modifies multimeric
VWF in a nonenzymatic manner through reduction in large
soluble multimers.41 Together, these studies offer an expla-
nation for the genetic association between factor Hmutations
and (complement-mediated) thrombotic microangiopathy:
factor H has multiple protective roles, which help control
the thrombogenicity of VWF. It is important to note that this
form of thrombotic microangiopathy is largely unrelated to
ADAMTS13 deficiency.2

Enzymes
A variety of enzymes can cleave VWF in vitro. These
enzymes include thrombin and plasmin,42 as well as
cathepsin G, neutrophil elastase, proteinase 3, matrix met-
alloproteinase 9,43 and granzymeM and B.44 The molecular
mechanisms by which these enzymes cleave VWF are not
uniform. Though some enzymes target the Tyr1605-Met1606
bond in VWF A2 domain (which is represented in the
fluorogenic FRETS-VWF73 peptide45) that is also targeted
by ADAMTS13, other enzymes have been shown to target
different sites. Most of the reported enzymes can be
secreted in active form by circulating cells or become
activated in blood plasma during clot formation or break-
down. It is attractive to hypothesize that these enzymes
contribute to the proteolysis of VWF in vivo and have
protective roles during attacks of TTP.

Neutrophil Enzymes
Neutrophils release enzymes during their activation. These
enzymes can cleave VWF close to or at the same position in
the A2 domain as ADAMTS13, even in the presence of
physiological inhibitors.42,43 Neutrophil-release products
are seen during attacks in various forms of thrombotic
microangiopathy26 and correlate well with disease
activity.46 It is attractive to hypothesize that neutrophil
enzymes are released for the degradation of VWF in
obstructive microthrombi. However, experimental evi-
dence points out that neutrophil enzymes are not (contin-
uously) involved in the degradation of VWF: neutrophil
depletion in Adamts13�/� mice does not affect VWF multi-
mer composition.47 Taken together, the overall contribu-
tion of neutrophil activation to acute TTP episodes appears
ambivalent: on the one hand, the release of NETs may
provide a “second hit” that worsens microthrombosis, on
the other hand, neutrophil enzymes may help ADAMTS13
degrade VWF during microangiopathy.
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Granzymes
Granules of cytotoxic lymphocytes contain a collection of
secretable enzymes named granzymes. Through a precise
mechanism that is dependent on formation of immunologic
synapses and perforin, granzymes are transferred to com-
promised target cells to cleave caspases and initiate apoptosis.
Granzymes are also produced byother cell types, such asmast
cells, that do not have this sophisticated cell-targeting capac-
ity. In this case, granzymes are secreted into the extracellular
compartment after degranulation. One of these is granzyme
B, which can cleave extracellular matrix proteins, as well as
fibrinogen and VWF.48 It cleaves VWF effectively when it is
unfolded and destroys its platelet-binding capacity. In con-
trast, granzyme M cleaves VWF in its globular conformation.
This does not affect its platelet-binding capacity but instead
abrogates the capacity of VWF to carry coagulation factor
VIII.49 The cleavage sites for both granzymes in VWF differ
from each other, explaining the selectivity of their actions on
VWF. Granzymes have been implicated in a variety of inflam-
matory conditions,50 where they may modulate the activities
of VWF.44

Thrombin
The coagulation cascade generates thrombin at sites of vessel
injury. This versatile enzyme is a key regulator of both
primary and secondary hemostasis. In a side-by-side com-
parison of multiple VWF-cleaving enzymes, thrombin has a
modest capacity to cleave VWF in comparison to neutrophil
elastase.42 Nonetheless, these same studies revealed that
purified thrombin removes adherent platelets from a collagen
surface. This experiment suggests that thrombin modulates
platelet adhesion to collagen by cleaving VWF, effectively
overruling the well-known platelet-activating properties of
thrombin.42 This leads to the question: could thrombin
influence the role of VWF in TTP?

Elevated thrombin-antithrombin (TAT) complexes, pro-
thrombin fragment F1 þ 2, and D-dimer levels are seen in
ST-HUS. These markers indicate prothrombin activation that
may be attributed to tissue factor expression.51,52 The direct
thrombin inhibitor hirudin prevents the lethal effects of Shiga
toxin in a canine model for ST-HUS,53 suggesting that the
overall role of thrombin in HUS is pathologic. However, the
role of thrombin in TTP is less clearly defined. Similar to HUS,
case reports of acute TTP patients describe elevated plasma
markers for thrombin activity.52,54–56 Paradoxically, this does
not appear to lead to fibrin-rich thrombi: microthrombi
observed in TTP pathology are generally classified as platelet
and VWF-rich, but poor in fibrin.25 This remarkable absence
of fibrin from these thrombi suggests that thrombin activity
in TTP is limited (if present at all). However, these findings
certainly do not rule out the possibility that thrombin directly
modulates the thrombogenicity of VWF during TTP attacks.

Plasmin
Plasmin is essential for fibrinolysis (i.e., the breakdown of
fibrin polymers in blood clots). The liver produces plasmino-
gen as precursor, which can be activated into plasmin by
tissue-type plasminogen activator (tPA). This enzyme mainly

becomes effective as an activator of plasminogen in the
presence of fibrin.57 Both tPA and plasminogen itself bind
to fibrin polymers in a lysine-dependent manner, facilitating
the enzymatic crosstalk required for successful clot
breakdown.

Through an alternative mechanism, plasminogen activa-
tion can be triggered on the surface of cells by urokinase-type
plasminogen activator (uPA). This occurs in a receptor-
mediated mechanism and does not require the presence of
fibrin. The uPA receptor (uPAR) is present on endothelial cells,
certain types of leukocytes (e.g., neutrophils), and platelets.58

Furthermore, a large number of cellular receptors for plas-
minogen havebeen identified,which are thought to direct the
multitude of diverse functions that plasmin is thought to
execute.59 Plasminogen activator inhibitor-1 (PAI-1) is an
important regulator of plasminogen activation. This serine
protease inhibitor can rapidly bind and inactivate both uPA
and tPA, preventing plasmin formation. In similar manner,
plasmin is inhibited by α2-antiplasmin. When plasmin is
bound to fibrin or to a receptor at the cell surface, it is
temporarily shielded from inactivation, allowing plasmin to
act longer on the cell surface than it would in solution.

Besides its role in fibrinolysis, plasmin can also cleave
VWF,42,60,61 as well as ADAMTS13,62,63 and is able to disag-
gregate platelet-VWF complexes in the absence of ADAMTS13
in vitro.42

Plasmin in TTP: Saint or Criminal?

We recently explored the possibility that plasmin plays an
important protective role in the pathogenesis of TTP by
degradation of VWF in microthrombi.64 We confirmed that
plasmin can cleave VWF and is capable of breaking down
platelet-VWF complexes in vitro. These findings support the
proposed protective function of plasmin during attacks of
thrombotic microangiopathy. However, our findings in
patients with TTP are more complex to interpret. In our
studies, we found that levels of plasmin-α2-antiplasmin
(PAP) complexes (representing recent plasminogen activa-
tion) are mainly elevated in plasma samples of patients
during acute attacks of TTP. In detail, levels of PAP complexes
correlate with the extent of thrombocytopenia, which serves
as amarker for disease activity as low platelet counts are seen
as a consequence of consumptive microthrombosis. This
observation appears counterintuitive: if plasmin mediates
degradation of microthrombi, why is plasminogen activation
seen during active disease, exactly when microthrombi are
not sufficiently cleared?

Acute TTP attacks are associated with increased tPA levels,
as well as increased PAI-1 levels.65 This could be the result of
endothelial cell activation. Surprisingly, fibrin degradation
product (FDP) and D-dimer levels remain normal, which
indicates that fibrin degradation is low or absent during
attacks. It is attractive to hypothesize that plasmin is formed
by tPA on platelet-VWF complexes.66 However, we found that
these complexes do not stimulate tPA-mediated plasminogen
activation,64 leaving them intact in the combined presence of
tPA and plasminogen. In contrast, we found that endothelial
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cells can swiftly generate sufficient amounts of plasmin (via
the urokinase system) to break down nearby platelet-VWF
complexes under shear flow. Hence, webelieve that this latter
mode of plasminogen activation takes place during TTP
attacks. This leads to the question: how is the urokinase
system activated during TTP attacks? Plasminogen activation
on the endothelium can be triggered by hypoxia67,68 and
takes place on the endothelium of ischemic tissue during
thrombotic microangiopathy: postmortem kidney sections
demonstrate that uPAR expression is highly increased in the
kidney vasculature of TTP patients, compared with control
subjects.69 We therefore propose plasminogen activation in
TTP is triggered only aftermicrothrombotic vascular obstruc-
tions trigger endothelial cell activation (►Fig. 1). This plasmin
subsequently degrades VWF aiming to eliminate these
obstructions, but it may also cause collateral damage by
degrading ADAMTS13 when its activity is improperly con-
trolled.62 This helps to explain why plasminogen activation
will coincide with TTP attacks, but why is this enzyme is not
always fully capable of averting disease?

Clinical evidence from patients provides an important
lead: acute TTP episodes are accompanied by decreased uPA
levels, indicating that this plasminogen activator is being
consumed.65 We hypothesize that in a situation where
obstructive microthrombi are successfully cleared by plas-
min, clinical symptoms will not become evident (i.e., the
patient will stay in an apparent remission state). However,
when the endogenous capacity for plasmin formation
becomes exhausted (e.g., after prolonged formation of
microthrombi), obstructions are no longer sufficiently
cleared with pathologic results. This concept may extend
beyond TTP: there is evidence to suggest that an imbal-
anced plasminogen activation system also has dangerous
consequences for other forms of thrombotic microangiop-
athy. First, plasminogen activation is reported to take place
in patients with ST-HUS.51 Recent studies identified that
genetic variations in the plasminogen gene that reduce its
expression form an important independent genetic risk

factor for this disease,70 indicating a protective function of
plasmin against HUS. In conclusion, we (as well as others71)
believe that plasmin can act as an enzymatic “last resort”
for the removal of vascular obstructions by cleaving fibrin,
VWF, or both.

A Possible Therapeutic Opportunity:
Thrombolysis for TTP Treatment

Bypassing Autoantibodies in TTP: A Clinical Challenge
Autoantibodies against ADAMTS13 form the underlying cause
for ADAMTS13 deficiency in most patients with TTP. These
antibodies also complicate plasma transfusion therapy by
neutralizing exogenous ADAMTS13. Based on our recent
findings, we propose that endogenous plasmin acts as a
natural “emergency replacement” for ADAMTS13. If this is
the case, thrombolytic agents may have therapeutic value for
patients with TTP. These drugs would help break down
obstructive microthrombi but would not be neutralized by
autoantibodies.

Proof-of-Concept Experiments
To explore the hypothesis that thrombolytic agents may be
therapeutic in TTP, we administered a single dose of the
direct-acting thrombolytic agent streptokinase to
ADAMTS13-deficientmice that had been subjected to amodel
for TTP (via injection of a high dose of recombinant VWF).64

We found that his treatment attenuated symptoms of TTP and
corrected the thrombocytopenia.

Safety Aspects
Bleeding is the most well-known side effect of thrombolytic
treatment. The risk of thrombolysis-related bleeding is
strongly associated with anticoagulant therapy (that many
of these patients use) and increases steeply with age.72 In
these patients, thrombocytopenia is a contraindication for
the use of thrombolytic agents. Intuitively, it can be assumed
that there will be a severe bleeding risk associated with the

Fig. 1. Model: Plasminogen activation on endothelial cells mediates degradation of platelet-VWF complexes. PAI-1, plasminogen activator
inhibitor-1; uPA, urokinase-type plasminogen activator; uPAR, uPA receptor; VWF, von Willebrand factor.
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treatment of TTP patients with thrombolytic agents,
especially as these patients are thrombocytopenic. This safety
aspect is of critical importance, and should be completely and
carefully investigated in a preclinical setting.

However, it is also very important to note that the main
body of clinical experience on the relationship between
thrombolysis and bleeding is based on the treatment of types
of thrombosis that do clinically not resemble TTP at all.
Actually, there is little to no clinical experience with throm-
bolytic agents in TTP. We would like to challenge the dogma
that thrombolytic treatment of TTP will carry a high risk of
bleeding: we believe that it will be possible to safely use
thrombolytic agents for treatment of TTP.

• Dosing: It is logical to assume that the treatment regimen
(dosage, length, and intensity) of thrombolytic therapy
that will be required for TTP is the same as that is needed
for other types of thrombosis. However, this may not be
the case: we found that a single dose of the direct-acting
plasminogen activator streptokinase was sufficient to
attenuate symptoms of TTP in an ADAMTS13-deficient
mouse model (at �20% of the loading dose by plasma
concentration that is given for pulmonary embolism
[PE]).64 Prolonged continuous infusion of thrombolysis
was not required (this is indicated for treatment of PE or
deep vein thrombosis [DVT]). We found no macroscopic
evidence for bleeding or a perturbed secondary hemosta-
sis after this treatment. Dosing studies in various preclini-
cal models will be helpful to estimate how much
plasminogen activation is actually needed for the man-
agement of TTP. This is important as the incidence of
bleeding events is directly related to the intensity of
thrombolytic therapy.72 Only after the required dosage is
established can any potential off-target effects of throm-
bolysis on primary and secondary hemostasis really be
evaluated.

• Molecular mechanisms: microthrombi in TTP are VWF-
rich but fibrin-poor. Thrombi in other forms of thrombosis
generally contain fibrin, which is protected from degrada-
tion by plasmin through a variety of molecular mecha-
nisms. As a result, thrombus breakdown by plasmin is
relatively slow and their destruction requires a prolonged
exposure to therapeutic plasminogen activators. This
treatment can lead to a partial consumption of fibrinogen
by plasmin. For example, treatment of ischemic stroke
patients with tPA leads to a 26% decrease in fibrinogen
levels. This decrease is associatedwith an increased risk on
thrombolysis-related bleeding, especially in patients with
low fibrinogen levels prior to treatment.73 In comparison
to “classic” breakdown of fibrin, plasmin-mediated
destruction of platelet-VWF complexes occurs relatively
rapid.68 Furthermore, VWF is not protected from cleavage
by dedicated molecular mechanisms (as far as we know).
These differences may strongly influence the amount of
plasmin that is required for TTP treatment, as well as the
risk on off-target effects.

• Patient characteristics: Age is a strong risk factor for the
development of cardiovascular events. Moreover, age is a

strong risk factor for thrombolysis-related bleeding in
these patients. In contrast, TTP patients may develop
attacks at much earlier times in life (with potential
implications for bleeding risk). Furthermore, it is expected
that TTP patients will not receive anticoagulant therapy
(a strong risk factor for thrombolysis-related bleeding).
Finally, thrombolysis-related bleeding generally occurs in
larger vessels that were previously occluded (e.g., intrace-
rebral hemorrhage follows after stroke). In contrast,
patients with TTP experience thrombosis of the microvas-
culature, where blood flow, blood pressure, and vesselwall
composition are strikingly different. Also, these determi-
nants may influence the risk on thrombolysis-related
bleeding.

• Consumptive thrombocytopenia—prohemostatic effects
of antihemostatic agents: During thrombocytopenia in
general, any treatment that further compromises hemo-
stasis (either primary or secondary) can logically be
expected to elicit bleeding problems. However, thrombo-
cytopenia in TTP is the result of an ongoing consumptive
reaction, in which platelets accumulate in microvessels
and become unavailable for hemostasis. Any treatment
that destroys microthrombi would “break this circle,”
thereby attenuating thrombocytopenia and reducing
bleeding risk. For example, it was recently reported that
full in vivo neutralization of VWF with nanobody ALX-
0681 did not induce bleeding in a primate model for
acquired TTP during thrombocytopenia.13 This can be
attributed to restoration of platelet counts (prohemo-
static), despite full blockade of VWF by ALX-0681 (a potent
antihemostatic agent). A clinical study with ALX-0681 in
patients with TTP has recently confirmed these findings.16

In a similar manner, platelet counts normalized when we
treated ADAMTS13-deficient mice in a mouse model for
TTP with thrombolysis. This suggests that plasmin may
exert a prohemostatic role in the consumptive thrombo-
cytopenia that hallmarks TTP, and that this would eventu-
ally reduce the bleeding risk.

The Optimal Thrombolytic Agent
We expect that not all types of thrombolytic agents will be
equally effective for the treatment of TTP. Direct-acting
plasminogen activators may be useful because plasmin has
a direct binding affinity for unfolded VWF.64 However, the
immunogenic potential of these agents limits their attrac-
tiveness for repeated use in TTP patients (as they are of
bacterial origin). The major clot-busting drug tPA can
directly bind to fibrin, but it is unable to target platelet-
VWF complexes for degradation in vitro.64 In contrast, uPA-
triggered plasminogen activation leads to rapid cleavage of
VWF, but only in the presence of cell-surface expressed
uPAR. Because uPA levels are reportedly reduced during
TTP attacks,65 we believe that reinforcement of the uroki-
nase system provides a viable target for further investiga-
tion as a therapy. Clinical experience with uPA is very
limited but appears positive: a case-report describes that
uPA was repeatedly used successfully for the treatment of
TTP.74Ultimately, it may be attractive to develop a new type
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of thrombolytic agent (e.g., by development of an antibody
fusion protein75) that directly targets VWF-rich
microthrombi.

Conclusion

ADAMTS13 is a key regulator of VWF and its deficiency is
strongly linked to TTP. However, the absence or presence of
ADAMTS13 alone does not fully explain the clinical picture
of this condition. This literature overview shows that
auxiliary mechanisms are in place to keep VWF under
control. We hypothesize that plasmin is an important
endogenous regulator of the thrombogenicity of VWF and
plays a role in the etiology of TTP. Plasminogen activation
takes place on the endothelium near sites of vascular
obstruction. We propose that stimulation or reinforcement
of plasminogen activation (in conjunction with other treat-
ments) has therapeutic value for the treatment of TTP.
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