
Obesity and Placental Function
Leslie Myatt, PhD, FRCOG2 Alina Maloyan, PhD1

1Center for Pregnancy and Newborn Research, University of Texas
Health Science Center San Antonio, San Antonio, Texas

2Department of Obstetrics and Gynecology, Oregon Health and
Science University, Portland, Oregon

Semin Reprod Med 2016;34:42–49

Address for correspondence Leslie Myatt, PhD, FRCOG, Department
of Obstetrics and Gynecology, Oregon Health and Science University,
3181 S.W. Sam Jackson Park Rd., Portland, OR 97239-3098
(e-mail: myattl@ohsu.edu).

Obesity is a global health concern among adults and
children of both sexes and has major societal and economic
costs. The number of women of reproductive age who are
overweight (body mass index [BMI] ¼ 25–30 kg/m2) or
obese (BMI > 30 kg/m2) continues to increase, with the
incidence of obesity among pregnant women now
estimated at between 18.5 and 38.3%.1 The economic cost
of obesity in pregnancy is greater than $100 million annu-
ally.2 Maternal obesity affects the continuum of pregnancy.
Fertility and fecundity rates are lower among overweight
and obese women, in spontaneous conception as well as in
artificial reproductive techniques.1 During pregnancy,
these women are more susceptible to hypertensive disor-
ders, gestational diabetes, respiratory complications, and
thromboembolic events.1,3–6 While unknown cause
remains the most common contributor to stillbirth with

40% of these cases occurring in late gestation,7 up to 25% of
stillbirths between 37 and 42 weeks of gestation are
perhaps due to obesity.8 Indeed obesity may explain the
increased morbidity including the increased risk (2.8 fold)
of late stillbirth, particularly inmales, in such pregnancies.9

Overweight women also have a slower labor progression
rate; higher rates of cesarean deliveries10; and more
surgery-related complications such as difficult spinal,
epidural, or general anesthesia, wound infection, and
endometritis.1,3 From the fetal and newborn perspective,
complications include congenital malformations,11 large-
for-gestational-age infants,12 intrauterine growth restric-
tion, stillbirth, and shoulder dystocia. Finally, the effects are
not confined to pregnancy alone. Obese and also gestational
diabetic women have greater rates of type 2 diabetes13 and
cardiovascular disease later in life.
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Abstract An increasing number of women of reproductive age are obese which affects the
continuum of pregnancy and is associated with an increased incidence of adverse
maternal and fetal outcomes, including preeclampsia, preterm birth, stillbirth, congen-
ital anomalies, and macrosomia. Maternal obesity is associated with an increased
incidence of metabolic and cardiovascular disease later in life in the mother and in the
offspring who are developmentally programed by the obese pregnancy environment.
The placenta transduces and mediates the effect of the adverse maternal environment
to the fetus. The obese maternal environment is characterized by hyperlipidemia and an
exaggerated state of inflammation and oxidative stress compared with normal preg-
nancy. Heightened inflammation and oxidative/nitrative stress are found in the placenta
in association with placental dysfunction. We have described reduced mitochondrial
respiration and ATP generation in trophoblast isolated from placentas of obese
compared with lean women, again suggesting compromised placental function. In
utero development exhibits sexual dimorphism with the male fetus at greater risk of
poor outcome. We have shown dimorphism in inflammation-mediated regulation of
trophoblast mitochondrial respiration. There is also increasing evidence that the obese
in utero environment may cause epigenetic changes in placenta leading to altered
function.
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Obesity and Developmental Programing

By virtue of its location and roles at the interface between the
mother and fetus, the placenta is the key regulator of fetal
growth and development.14 The placenta not only conveys the
maternal metabolic environment to the fetus but can also
becomeboth a target and a source of pathogenic factors affecting
the fetus.15Developmental programing occurswhen the normal
developmental pattern is disrupted by inappropriate or ill-timed
signals reaching the fetus or neonate which is then set on an
altereddevelopmental trajectory that can lead todisease in adult
life.16A largebodyofevidence17 shows that anadverseor altered
intrauterine or early postnatal environment, including obesity,
can program for disease in adult life including cardiovascular
disease, obesity andmetabolic syndrome, diabetes, osteoporosis,
cancer, and disorders of the hypothalamic/pituitary/adrenal
axis.1,3,18–20Hence,while obesewomenmay havebabieswithin
the normal birth weight range, with normal sized placentas and
apparently a normal outcome there may be a programing effect
on the fetus that is only revealed subsequently. While it is clear
that maternal obesity programs the fetus, the mechanism and
physiological consequences of the adverse metabolic and
inflammatory environment of obesity for placental function
and fetal development are just now being elucidated.

Sexual Dimorphism and Developmental
Programing

It is clear that male and female fetuses respond differently to the
adverse intrauterine environment. This may then relate to their
risk of developing disease in adult life where differences in
incidence of various diseases are clearly documented. Even in
“normal” pregnancy and development, there is a sexually
dimorphic effect. Male fetuses grow faster and are usually larger
than females.21 However, male fetuses are at much higher risk
during pregnancy and showgreater incidences of preterm birth,
preterm premature rupture of membranes, placenta previa,
lagging lung development, greater incidence of macrosomia
with maternal glucose intolerance, and more late stillbirths
associated with pregestational diabetes.22 The female neonate
canmore readily adapt to ex utero life evenwhen delivered in a
highly immature state at midgestation, an effect possibly medi-
ated by in utero adaptations to an adverse environment prior to
delivery.23 The male fetus is claimed “to live dangerously in the
womb” to maximize its growth potential but with consequent
high risk when facedwith additional adverse events.22 It is likely
that there is a complex interaction between the adverse
environment of obesity and fetal sex.

Sexual Dimorphism and the Placenta

The placenta is a fetal tissue that shows sexual dimorphism.
Microarray analysis revealed distinct sexually dimorphic
profiles of gene expression in the human placenta; in partic-
ular immune genes were expressed at higher level in female
placenta compared with male.24 Gene expression in the
placenta also responds to maternal inflammatory status in
sex-dependent manner.25 Expression of 59 genes was

changed in the placenta of women with asthma versus no
asthma with a female fetus compared with only 6 genes
changed in those with asthma with a male fetus.26 Some of
these genes were associated with growth, inflammatory, and
immune pathways. Changes in diet provide distinctive signa-
ture of sexually dimorphic genes in placenta with expression
generally higher in genes in female than in male placenta.27

The male placenta has higher toll-like receptor 4 (TLR4)
expression and a greater production of tumor necrosis factor
(TNF)-α in response to lipopolysaccharide (LPS) than the
female placenta, which can underlie the propensity to
preterm birth in males.28 The mechanisms of sexual dimor-
phism in placenta with obesity remain unstudied; however,
evidence from other complicated pregnancies links sex differ-
ences to gonadal steroids. Women with preeclampsia have
increased plasma testosterone levels compared with those of
healthy pregnant women, with significantly higher levels in
male- than in female-bearing preeclamptic pregnancies.29 At
the same time, the placental levels of aromatase, a rate-
limiting enzyme converting androgens to estrogens, varied
depending on fetal sex: it wasmuch higher in the preeclamp-
tic placentas with female than male fetuses.30 Interestingly,
aromatase can be downregulated by TNFα, hypoxia, insulin,
and leptin, whichmirror the actual conditions of the placenta
in the context of maternal obesity.31–34

Inflammation in Pregnancy with Obesity

Pregnancy per se is an inflammatory state.35 This is enhanced
in pregnancies complicated by obesity,36 where increased
concentrations of inflammatory cytokines can be seen in
maternal plasma37 and the placenta.38 The increased placen-
tal inflammation in obese pregnancy may be stimulated by
endotoxin,36 lipids,39 reactive oxygen species (ROS),40 or
oxidized lipids.41 Chronic low-grade inflammation in obese
women prior to pregnancy initiates a cascade of events which
translate into an inflammatory in utero environment. Signif-
icant accumulation of subsets of macrophages has been
shown in placentas from obese patients resulting in produc-
tion of proinflammatory cytokines and adipokines including
interleukin-6 (IL-6), leptin, TNF-α, monocyte chemotactic
protein 1, and TLR4.42–44 Uncontrolled placental inflamma-
tion leads to the impairment of overall placental function
such as increased free fatty acid (FFA) delivery to the fetal
circulation, which is expected to alter fetal growth and
development.45 We found that TNF-α, used to simulate the
inflammatory milieu of obesity, decreases trophoblast mito-
chondrial respiration but in a sexually dimorphicmanner. The
effect is seen only in trophoblasts of a female placenta and is
mediated by the transcription factor NFκB1.46

Effect of Obesity on Maternal and Placental
Metabolism in Pregnancy

Pregnancy is a state of profound metabolic changes charac-
terized by increased fat mass, insulin resistance, low-grade
inflammation,35 andmild hyperlipidemia,47where phospho-
lipids, total LDL and HDL cholesterol, and triglycerides all
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increase. The metabolic changes become exacerbated with
pregravid obesity.48 Obese pregnant women are character-
ized by high levels of FFA, higher circulating levels of leptin,
TNF-α, IL-1, IL-6, IL-8, oxidative stress, and reduced levels of
adiponectin.49

The placenta, particularly syncytiotrophoblast, has tre-
mendous oxygen consumption50 and metabolic activity,
the energy for which is derived from ATP mainly generated
by oxidative phosphorylation inmitochondria. Glucosewas
traditionally thought of as the major (if not sole) substrate
for energy generation in fetus and placenta.51 However, the
placenta does not appear to utilize anaerobic glycolysis to
generate energy during periods of anoxia.52 Work in the
past 10 years has shown that the placenta can generate
energy from fatty acids53 via fatty acid oxidation (FAO).54

Long chain fatty acids necessary for placental FAO are
abundant in maternal plasma in late gestation but are
markedly increased with obesity and thought to play a
role in insulin resistance.55 Deficiencies in placenta of
enzymes involved in FAO lead to accumulation of toxic
long chain metabolites and are associated with maternal
HELLP syndrome and with preeclampsia.56 Saturated fatty
acids, palmitate and stearate, activate inflammatory
signaling pathways via interaction with TLRs and via secre-
tion of cytokines including TNF-α, Il-1β, and IL-6.57 We find
significantly increased level of TNF-α in the placenta of
female fetuses of obese women.46 Fatty acids also reduce
mitochondrial function through induction of proinflam-
matory cytokines, and chronically elevated fatty acids are
associated with increased production of reactive oxygen
and nitrogen species.58 There has not been an investigation
of FAO in the placenta of obese pregnancies, nor has it been
studied in relation to circulating maternal saturated or
unsaturated fatty acids, inflammatory cytokines, or oxida-
tive stress or to fetal outcomes.

Free Fatty Acids and Lipid Transport in
Placenta during Maternal Obesity

Although maternal hyperglycemia has long been associated
with increased fetal growth,59 maternal triglycerides also
contribute with aberrant fetal growth seen with gestational
diabetesmellitus (GDM) despite good glucose control. Indeed
in multivariate analysis, increased birth weight positively
correlates only with hypertriglyceridemia in women with
GDM.60 However, such studies have not been performed in
pregnancies complicated by obesity alone, nor in relation to
fetal adiposity.

Placental uptake of FFAs from the maternal circulation
provides fatty acids both for placental metabolism and deliv-
ery to the fetus.61 Cells involved in active lipid trafficking
express discrete fatty acid binding proteins (FABP), implicated
in cellular uptake and transport of fatty acids and coordina-
tion of metabolic and inflammatory pathways.62,63 FABP1,
FABP3, FABP4, FABP5, and FABP plasma membranes are
expressed in human trophoblasts.64 Maternal obesity can
alter lipid content and increase the expression of FABP4 in
trophoblasts.65 An ovine model of maternal obesity showed

significantly higher concentration of FFA in the fetal circula-
tion of obese ewes at midgestation than in control ewes.45 In
addition, the level of peroxisome proliferator-activated
receptor gamma which is known to be essential for placental
development and placental uptake of fatty acids was found to
be activated in the placenta of obese ewes.61 As fatty acids are
ligands for TLR4, which drives the inflammatory response,66

it was postulated that excessive fatty acids in the fetal
circulation in the setting of maternal obesity would activate
TLR4 signaling, resulting in inflammation of fetal tissues.

Placental Oxidative/Nitrative Stress and
Obesity

Pregnancy is a state of oxidative stress. Mitochondria are the
major source of ROS under physiologic conditions. Increased
metabolic activity in placental mitochondria and the reduced
scavenging power of antioxidants may be responsible for
rapid ROS generation by different placental cell types.67,68

At the same time, mitochondrial function itself can be
compromised by severe and/or prolonged oxidative stress.
Oxidative inactivation of mitochondrial DNA polymerase
gamma could slow down mitochondrial DNA (mtDNA) repli-
cation and eventually lead to inhibition of oxidative phos-
phorylation.69 The placenta can also produce nitric oxide
(NO.) and this molecule in combination with excess superox-
ide can result in the production of peroxynitrite (ONOO�),
leading to nitrative stress. Peroxynitrite is a powerful proox-
idant that can modify tyrosine residues within a protein
sequence to give nitrotyrosine, or protein nitration. Covalent
modification of proteins by nitration may be a physiologic
regulatory mechanism in redox regulation for signaling path-
ways.70 Nitrotyrosine residues have been demonstrated in
the placenta of pregnancies complicated by preeclampsia,71

pregestational diabetes,72 and chronic hypoxia at high alti-
tude.73 We have previously shown nitration of several pro-
teins in the human placenta, and demonstrated that the
extent of nitration is increased in obese compared with
lean and overweight placentas.40 Koeck et al74 provided
evidence for rapid and selective oxygen-regulated protein
tyrosine denitration/nitration in the mitochondria. Nitrated
proteins can be eliminated frommitochondria during hypox-
ia/anoxia and regenerated during reoxygenation. This nitra-
tion/denitration in mitochondria may affect cellular energy
and redox homeostasis and therefore cell and tissue viability.

Placental Mitochondrial Energetics and
Obesity

As stated previously, the placenta can generate energy from
fatty acids53 following FAO and generation of acetyl CoA. We
have shown that with increasing maternal adiposity, there is
a significant fall in mitochondrial respiration by oxidative
phosphorylation and in ATP generation in the placenta75 that
is not compensated for by glycolysis. In galactose-containing
medium, the trophoblast from obese pregnancies cannot
increase oxidative phosphorylation, that is, they show
metabolic inflexibility. This would suggest that with obesity,
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the generation of acetyl CoA by FAO is compromised. Fatty
acids also reduce mitochondrial function perhaps via proin-
flammatory cytokines and/or increased production of reac-
tive oxygen and nitrogen species.58 In turn, mitochondrial
dysfunction can lead to a reduction in mitochondrial FAO.76

Saturated fatty acids (palmitate, stearate) may be more
damaging while unsaturated fatty acids (oleic, DHA) may
be beneficial.

Mitochondria generate most of the cell’s supply of ATP,
used as a source of chemical energywhich are also involved in
a range of other processes, such as signaling, cellular differ-
entiation, apoptosis and programed cell death, control of the
cell cycle and cell growth, regulation of the membrane
potential, regulation of cellular metabolism, and steroid
synthesis. Damage, reduced content, and functional capacity
of mitochondria are involved in neurodegenerative and car-
diovascular diseases,77 obesity and diabetes.78,79 Diminished
FAO and greater dependence on glucose for ATP synthesis,80

ectopic lipid accumulation in skeletal muscle, the liver, and
other cells81 and low basal ATP concentrations43 are seen
with obesity.Mitochondrial oxidative capacity is decreased in
skeletal muscle of obese individuals,76 in the kidney of high-
fat diet (HFD)-fed mice,82 as well as in the liver and the heart
of ob/obmice.83,84 An isoenergetic HFD in healthy youngmen
for only 3 days was sufficient to reduce the expression of
genes involved in mitochondrial complexes I and II, and
mitochondrial carriers.85 While oxidative stress and mito-
chondrial dysfunction are often proposed as mechanisms
mediating dysfunction in various organs in obesity models,
little data are available for the placenta.

Sexual Dimorphism in the Effect of
Inflammation on Placental Mitochondria

MicroRNAs (miRNAs) are conserved, regulatory molecules
that have an important role in the posttranscriptional
regulation of target gene expression by promoting mRNA
instability or translational inhibition.86 MicroRNA-210,
which has been traditionally linked to hypoxia,87 targets
and decreases activity of mitochondrial subunits in placen-
ta,88 hence reducing cellular respiration. We have shown that
expression of miR-210 was significantly increased in pla-
centas of obese and overweight women conceived with
female, but notmale, fetuses comparedwith female placentas
of lean women.46 We also demonstrated increased TNF-α in
female but not male placentas of overweight and obese
women, and that via NFκB1 (p50) signaling this resulted in
activation of miR-210 expression. Chromatin immunoprecip-
itation assay showed that NFkB1 binds to placental miR-210
promoter in a fetal sex-dependent manner such that female
but not male trophoblast treated with TNF-α showed over-
expression of miR-210, reduction of mitochondrial target
genes, and decreased mitochondrial respiration. Overall,
our data suggest that the inflammatory intrauterine environ-
ment associated with maternal obesity induces an NFκB1-
mediated increase in miR-210 in a fetal sex-dependent
manner, leading to inhibition of mitochondrial respiration
and placental dysfunction in the placentas of female fetuses.

We propose that impairedmitochondrial function in placenta
and hence altered placental metabolism can evoke changes in
the fetus and may potentially link maternal obesity to meta-
bolic and cardiovascular disease in the offspring.

We have recently shown that increasing maternal adiposi-
ty is associated with increased generation of ROS and de-
creased mitochondrial respiration in the placenta.75 Total
antioxidant capacity and activity of superoxide dismutase
are significantly greater in the lean male placentas than in
lean female placentas or placentas of either sex from an obese
mother (unpublished data, L. Myatt PhD, 2015), that is, there
is sexual dimorphism and an effect of obesity. The connection
of oxidative stress to mitochondrial dysfunction has refo-
cused use of antioxidants in pregnancy toward alleviation of
mitochondrial dysfunction. Selenium is a trace element nec-
essary for normal cellular function and which protects tro-
phoblast mitochondria against oxidative stress89 by
upregulating activity of antioxidant enzymes glutathione
peroxidases, thioredoxin reductases, and iodothyronine
deiodinases.90

Obesity and Epigenetics in the Placenta

Epigenetics describes heritable changes in gene expression
that are not mediated by DNA sequence alterations91 but are
susceptible to environmental influences.92 Several diverse
factors epigenetically regulate genes, including age, lifestyle,
inflammation, gender, genotype, stress, nutrition, metabo-
lism, drugs, and infection.93 Epigenetic information is con-
veyed in mammals via a synergistic interaction between
mitotically heritable patterns of DNA methylation94 and
chromatin structure.95 Local chromatin conformation regu-
lates specific methylation patterns to control gene transcrip-
tion.96 Epigeneticmechanisms havebeenpostulated to have a
role in developmental programing of obesity and type 2
diabetes in offspring by the intrauterine environment97 and
may therefore also regulate placental function. There are
several mechanisms that regulate epigenetic changes.

Gene expression can be altered via posttranslational cova-
lent modifications of chromatin by histone methylation or
acetylation which determines accessibility to transcription
factors98 leading to transcriptionally repressive or permissive
chromatin structures.99,100 Repressive histone modifications
seem to confer short-term, flexible silencing important for
developmental plasticity, whereas DNA methylation is
believed to be a more stable, long-term silencing mecha-
nism.101Differential histone modification occurs in a gender-
specific manner,102 and in primates103 and rats,104 consump-
tion of a maternal HFD gave altered histone modifications of
fetal hepatic genes accompanied by alterations in hepatic
gene expression. There is, however, relatively little data105 on
histone modification in the human placenta with pregnancy
complications.

Hypermethylation of DNA in promoter regions typically is
associated with transcriptional repression of genes, whereas
hypomethylation leads to gene activity.106 Global DNAmeth-
ylation in the placenta increases with advancing gestational
age,107 but with greater interindividual variation in the third
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trimester suggesting environmental factors may influence
methylation, gene expression, and function of the placenta.
Variations in DNA methylation profiles in the term placenta
are seen in relation to pregnancy outcome (reviewed in
Koukoura et al108). Recently, a novel modification DNA
hydroxymethylation has been described.109 Ten-eleven
translocase (TET) enzymes convert 5mC to 5hmC. Although
5mC is repressive, 5hmC is permissive for gene expression.
Therefore, the balance of 5mC to 5hmc at particular CpGsmay
control gene expression. Alpha ketoglutarate (αKG) and
ascorbate are cofactors for TET enzymes, suggesting a link
between cellular metabolism and epigenetic regulation of
cellular activity as αKG is produced in the citric acid cycle.
Maternal nutritional status may alter the epigenetic state of
the fetal genome and imprinted gene expression.110 Hyper-
glycemia induces demethylation of specific cytosines
throughout the genome111 with altered gene expression.

In mammalian genomes, DNA methyltransferase (DNMT)
enzymes mediate the transfer of methyl groups from
S-adenosylmethionine to cytosine,112 establish and maintain
DNA methylation patterns at specific regions of the genome,
and contribute to gene regulation. DNMT1 is primarily a
maintenance methyltransferase preserving methylation
patterns during cell division, while DNMT3 enzymes are
responsible for de novo methylation. The metabolic/inflam-
matory milieu of obesity increases DNMT3a expression of
DNMT3a in adipose tissue of obese mice113 and correlates
with gene suppression. There is little data available onDNMTs
in human placenta.

The Influence of Nutrition and the Metabolic
Environment on Epigenetic Modifications

While there is increasing evidence from other tissues that
metabolic regulation of epigenetic mechanisms occurs, it is
relatively unstudied in placenta. Tight regulation of epigenet-
ic changes is essential especially in the early phase of gesta-
tion where global DNA demethylation in the zygote is seen
but may subsequently be influenced by the maternal meta-
bolic environment. Chromatin-modifying enzymes including
DNMTs can sense and respond to alterations to the nutritional
environment through their effects on intermediary metabo-
lites.114 Differences in DNA methylation have been reported
in individuals exposed to famine during the Dutch Hunger
Winter.115,116 In later life, the epigenome appears to be
capable of responding to changes in nutrients including
deficiencies in methyl donors,117 folic acid supplementa-
tion,118 as well as fat119 and caloric restriction.120 The dra-
matic changes in methylation seen in early gestation and the
relative hypomethylation of the placenta suggest it to be
susceptible to dietary influences. Recently, intrauterine calo-
ric restriction in mice, which programs male offspring for
glucose intolerance, increased fat mass, and hypercholester-
olemia, gave a significant decrease in overall methylation
throughout the placental genome.121 The level of demethyla-
tionwas greater in placentas ofmalemice than in placentas of
female mice and imprinted genes appeared to be more
susceptible to methylation changes.

Conclusion

The intrauterine environment found in the obese women is
associated with poor pregnancy outcomes and importantly
with programing the fetus for disease in later life. This effect is
mediated via the placenta (►Fig. 1), which displays altered
function and compromised energetics related to the obese
environment of hyperlipidemia, heightened inflammation,
and oxidative stress. Evidence that the metabolic environ-
ment of obesity causes epigenetic changes is accumulating
and needs to be studied in the placenta to link cellular
metabolism to changes in gene expression and cellular func-
tion. There is also an overarching effect of fetal and placental
sex, which now needs to be considered when studying
placental function.
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