Semin Reprod Med 2016; 34(01): 011-016
DOI: 10.1055/s-0035-1570031
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Animal Models to Study Placental Development and Function throughout Normal and Dysfunctional Human Pregnancy

Peta L. Grigsby
1   Division of Reproductive and Developmental Sciences, Department of Obstetrics and Gynecology, Oregon Health and Science University, Beaverton, Oregon
› Author Affiliations
Further Information

Publication History

Publication Date:
11 January 2016 (online)

Abstract

Abnormalities of placental development and function are known to underlie many pathologies of pregnancy, including spontaneous preterm birth, fetal growth restriction, and preeclampsia. A growing body of evidence also underscores the importance of placental dysfunction in the lifelong health of both mother and offspring. However, our knowledge regarding placental structure and function throughout pregnancy remains limited. Understanding the temporal growth and functionality of the human placenta throughout the entirety of gestation is important if we are to gain a better understanding of placental dysfunction. The utilization of new technologies and imaging techniques that could enable safe monitoring of placental growth and function in vivo has become a major focus area for the National Institutes of Child Health and Human Development, as evident by the establishment of the “Human Placenta Project.” Many of the objectives of the Human Placenta Project will necessitate preclinical studies and testing in appropriately designed animal models that can be readily translated to the clinical setting. This review will describe the advantages and limitations of relevant animals such as the guinea pig, sheep, and nonhuman primate models that have been used to study the role of the placenta in fetal growth disorders, preeclampsia, or other maternal diseases during pregnancy.

 
  • References

  • 1 Nathanielsz PW. Animal models that elucidate basic principles of the developmental origins of adult diseases. ILAR J 2006; 47 (1) 73-82
  • 2 Ma J, Prince AL, Bader D , et al. High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nat Commun 2014; 5: 3889
  • 3 Pound LD, Comstock SM, Grove KL. Consumption of a Western-style diet during pregnancy impairs offspring islet vascularization in a Japanese macaque model. Am J Physiol Endocrinol Metab 2014; 307 (1) E115-E123
  • 4 Sadovsky Y, Clifton VL, Burton GJ. Invigorating placental research through the “Human Placenta Project”. Placenta 2014; 35 (8) 527
  • 5 Guttmacher AE, Maddox YT, Spong CY. The Human Placenta Project: placental structure, development, and function in real time. Placenta 2014; 35 (5) 303-304
  • 6 Webster RP, Myatt L. Elucidation of the molecular mechanisms of preeclampsia using proteomic technologies. Proteomics Clin Appl 2007; 1 (9) 1147-1155
  • 7 Webster RP, Pitzer BA, Roberts VH, Brockman D, Myatt L. Differences in the proteome profile in placenta from normal term and preeclamptic preterm pregnancies. Proteomics Clin Appl 2007; 1 (5) 446-456
  • 8 Keelan JA, Pugazhenthi K. Trans-placental passage and anti-inflammatory effects of solithromycin in the human placenta. Placenta 2014; 35 (12) 1043-1048
  • 9 Muralimanoharan S, Guo C, Myatt L, Maloyan A. Sexual dimorphism in miR-210 expression and mitochondrial dysfunction in the placenta with maternal obesity. Int J Obes 2015; 39 (8) 1274-1281
  • 10 Wulff C, Weigand M, Kreienberg R, Fraser HM. Angiogenesis during primate placentation in health and disease. Reproduction 2003; 126 (5) 569-577
  • 11 Georgiades P, Ferguson-Smith AC, Burton GJ. Comparative developmental anatomy of the murine and human definitive placentae. Placenta 2002; 23 (1) 3-19
  • 12 Furukawa S, Kuroda Y, Sugiyama A. A comparison of the histological structure of the placenta in experimental animals. J Toxicol Pathol 2014; 27 (1) 11-18
  • 13 Haluska GJ, Cook MJ, Novy MJ. Inhibition and augmentation of progesterone production during pregnancy: effects on parturition in rhesus monkeys. Am J Obstet Gynecol 1997; 176 (3) 682-691
  • 14 Leiser R, Kaufmann P. Placental structure: in a comparative aspect. Exp Clin Endocrinol 1994; 102 (3) 122-134
  • 15 Enders AC, Carter AM. Comparative placentation: some interesting modifications for histotrophic nutrition—a review. Placenta 2006; 27 (Suppl A): S11-S16
  • 16 Carter AM, Enders AC, Jones CJP , et al. Comparative placentation and animal models: patterns of trophoblast invasion—a workshop report. Placenta 2006; 27: 30-33
  • 17 Huppertz B, Abe E, Murthi P, Nagamatsu T, Szukiewicz D, Salafia C. Placental angiogenesis, maternal and fetal vessels—a workshop report. Placenta 2007; 28 (Suppl A): S94-S96
  • 18 Salafia CM, Popek E. Inflammatory and vascular placental pathology. Glob Libr Women's Med 2008; ; doi:10.3843/GLOWM.10152
  • 19 Carter AM. Animal models of human placentation–a review. Placenta 2007; 28: 41-47
  • 20 Barry JS, Anthony RV. The pregnant sheep as a model for human pregnancy. Theriogenology 2008; 69 (1) 55-67
  • 21 Fischer B, Chavatte-Palmer P, Viebahn C, Navarrete Santos A, Duranthon V. Rabbit as a reproductive model for human health. Reproduction 2012; 144 (1) 1-10
  • 22 Enders AC. Transition from lacunar to villous stage of implantation in the macaque, including establishment of the trophoblastic shell. Acta Anat (Basel) 1995; 152 (3) 151-169
  • 23 Garcia-Villar R, Toutain PL, Ruckebusch Y. Electromyographic evaluation of the spontaneous and drug-induced motility of the cervix in sheep. J Pharmacol Methods 1982; 7 (1) 83-90
  • 24 Hirst JJ, Haluska GJ, Cook MJ, Novy MJ. Plasma oxytocin and nocturnal uterine activity: maternal but not fetal concentrations increase progressively during late pregnancy and delivery in rhesus monkeys. Am J Obstet Gynecol 1993; 169 (2, Pt 1): 415-422
  • 25 Maslar IA, Hess DL, Buckmaster JG, Lazur JJ, Stanczyk FZ, Novy MJ. Steroid production by early pregnancy human placental villi in culture. Placenta 1990; 11 (3) 277-288
  • 26 Ellinwood WE , et al. Dynamics of steroid biosynthesis during the luteal-placental shift in rhesus monkeys. J Clin Endocrinol Metab 1989; 69 (2) 348-355
  • 27 Mitchell BF, Taggart MJ. Are animal models relevant to key aspects of human parturition?. Am J Physiol Regul Integr Comp Physiol 2009; 297 (3) R525-545
  • 28 Novy MJ, Haluska GJ. New perspectives on estrogen, progesterone, and oxytocin action in primate parturition. In: Chwalisz K, Garfield R, eds. Basic Mechanisms Controlling Term and Preterm Labor. Ernst Schering Foundation Symposium Proceedings 1993 Springer-Verlag, Berlin
  • 29 Nathanielsz PW, Jenkins SL, Tame JD, Winter JA, Guller S, Giussani DA. Local paracrine effects of estradiol are central to parturition in the rhesus monkey. Nat Med 1998; 4 (4) 456-459
  • 30 Myers RE. The pathology of the rhesus monkey placenta. Acta Endocrinol Suppl (Copenh) 1972; 166: 221-257
  • 31 Slater DM, Dennes WJ, Campa JS, Poston L, Bennett PR. Expression of cyclo-oxygenase types-1 and -2 in human myometrium throughout pregnancy. Mol Hum Reprod 1999; 5 (9) 880-884
  • 32 Slayden OD. Cyclic remodeling of the nonhuman primate endometrium: a model for understanding endometrial receptivity. Semin Reprod Med 2014; 32 (5) 385-391
  • 33 Franasiak JM, Burns KA, Slayden O , et al. Endometrial CXCL13 expression is cycle regulated in humans and aberrantly expressed in humans and Rhesus macaques with endometriosis. Reprod Sci 2015; 22 (4) 442-451
  • 34 Chez RA, Schlesselman JJ, Salazar H, Fox R. Single placentas in the rhesus monkey. J Med Primatol 1972; 1 (4) 230-240
  • 35 Roberts VH, Räsänen JP, Novy MJ , et al. Restriction of placental vasculature in a non-human primate: a unique model to study placental plasticity. Placenta 2012; 33 (1) 73-76
  • 36 Martin Jr CB, Ramsey EM, Donner MW. The fetal placental circulation in rhesus monkeys demonstrated by radioangiography. Am J Obstet Gynecol 1966; 95 (7) 943-947
  • 37 Perry JS. The mammalian fetal membranes. J Reprod Fertil 1981; 62 (2) 321-335
  • 38 Mitchell BF, Taggart MJ. Are animal models relevant to key aspects of human parturition?. Am J Physiol Regul Integr Comp Physiol 2009; 297 (3) R525-R545
  • 39 Challis JRG, Matthews SG, Gibb W, Lye SJ. Endocrine and paracrine regulation of birth at term and preterm. Endocr Rev 2000; 21 (5) 514-550
  • 40 Heap RB, Deanesly R. Progesterone in systemic blood and placentae of intact and ovariectomized pregnant guinea-pigs. J Endocrinol 1966; 34 (4) 417-423
  • 41 Heap RB, Flint APF. Pregnancy. In: Austin CR, Short RV, eds. Hormonal Control of Reproduction. Cambridge: Cambridge University Press; 1984: 153-194
  • 42 Csapo AI, Pulkkinen M. Indispensability of the human corpus luteum in the maintenance of early pregnancy. Luteectomy evidence. Obstet Gynecol Surv 1978; 33 (2) 69-81
  • 43 Csapo AI, Puri CP, Tarro S. Relationship between timing of ovariectomy and maintenance of pregnancy in the guinea-pig. Prostaglandins 1981; 22 (1) 131-140
  • 44 Rodríguez HA, Ortega HH, Ramos JG, Muñoz-de-Toro M, Luque EH. Guinea-pig interpubic joint (symphysis pubica) relaxation at parturition: underlying cellular processes that resemble an inflammatory response. Reprod Biol Endocrinol 2003; 1: 113
  • 45 Leiser R, Krebs C, Ebert B, Dantzer V. Placental vascular corrosion cast studies: a comparison between ruminants and humans. Microsc Res Tech 1997; 38 (1–2) 76-87
  • 46 Pijnenborg R, Vercruysse L, Brosens I. Deep placentation. Best Pract Res Clin Obstet Gynaecol 2011; 25 (3) 273-285
  • 47 Schmidt A, Morales-Prieto DM, Pastuschek J, Fröhlich K, Markert UR. Only humans have human placentas: molecular differences between mice and humans. J Reprod Immunol 2015; 108: 65-71
  • 48 Chaouat G, Clark DA. Are animal models useful or confusing in understanding the human feto-maternal relationship? A debate. J Reprod Immunol 2015; 108: 56-64
  • 49 Pijnenborg R, Vercruysse L, Carter AM. Deep trophoblast invasion and spiral artery remodelling in the placental bed of the lowland gorilla. Placenta 2011; 32 (8) 586-591
  • 50 Pijnenborg R, Vercruysse L, Carter AM. Deep trophoblast invasion and spiral artery remodelling in the placental bed of the chimpanzee. Placenta 2011; 32 (5) 400-408
  • 51 Dunk C, Petkovic L, Baczyk D, Rossant J, Winterhager E, Lye S. A novel in vitro model of trophoblast-mediated decidual blood vessel remodeling. Lab Invest 2003; 83 (12) 1821-1828
  • 52 Whitley GS, Cartwright JE. Cellular and molecular regulation of spiral artery remodelling: lessons from the cardiovascular field. Placenta 2010; 31 (6) 465-474
  • 53 Gravett MG, Witkin SS, Haluska GJ , et al. An experimental model for intraamniotic infection and preterm labor in rhesus monkeys. Am J Obstet Gynecol 1994; 171 (6) 1660-1667
  • 54 Grigsby PL, Novy MJ, Sadowsky DW , et al. Maternal azithromycin therapy for Ureaplasma intraamniotic infection delays preterm delivery and reduces fetal lung injury in a primate model. Am J Obstet Gynecol 2012; 207 (6) 475.e1-475.e14
  • 55 Schneider ML, Champoux M, Moore CF. Neurobehavioral assessments of non-human primate neonates. In: Sackett GP, Ruppenthal GC, Elias K, eds., Nursery Rearing of Non-Human Primates in the 21st Century. Springer; 2006
  • 56 Curtis B, Liberato N, Rulien M , et al. Examination of the safety of pediatric vaccine schedules in a non-human primate model: assessments of neurodevelopment, learning, and social behavior. Environ Health Perspect 2015; 123 (6) 579-589
  • 57 Novy MJ. Effects of indomethacin on labor, fetal oxygenation, and fetal development in rhesus monkeys. Adv Prostaglandin Thromboxane Res 1978; 4: 285-300
  • 58 Giussani DA, Jenkins SL, Mecenas CA , et al. The oxytocin antagonist atosiban prevents androstenedione-induced myometrial contractions in the chronically instrumented, pregnant rhesus monkey. Endocrinology 1996; 137 (8) 3302-3307
  • 59 Acosta EP, Grigsby PL, Larson KB , et al. Transplacental transfer of Azithromycin and its use for eradicating intra-amniotic Ureaplasma infection in a primate model. J Infect Dis 2014; 209 (6) 898-904
  • 60 Hong SG, Winkler T, Wu C , et al. Path to the clinic: assessment of iPSC-based cell therapies in vivo in a nonhuman primate model. Cell Reports 2014; 7 (4) 1298-1309
  • 61 Krugner-Higby L, Luck M, Hartley D, Crispen HM, Lubach GR, Coe CL. High-risk pregnancy in rhesus monkeys (Macaca mulatta): a case of ectopic, abdominal pregnancy with birth of a live, term infant, and a case of gestational diabetes complicated by pre-eclampsia. J Med Primatol 2009; 38 (4) 252-256
  • 62 Makris A, Thornton C, Thompson J , et al. Uteroplacental ischemia results in proteinuric hypertension and elevated sFLT-1. Kidney Int 2007; 71 (10) 977-984
  • 63 Sunderland NS, Thomson SE, Heffernan SJ , et al. Tumor necrosis factor α induces a model of preeclampsia in pregnant baboons (Papio hamadryas). Cytokine 2011; 56 (2) 192-199
  • 64 Nathanielsz PW, Smith G, Wu W. Topographical specialization of prostaglandin function in late pregnancy and at parturition in the baboon. Prostaglandins Leukot Essent Fatty Acids 2004; 70 (2) 199-206
  • 65 Liggins GC. Physiology of initiation of labour. Dan Med Bull 1979; 26 (3) 111-113
  • 66 Liggins GC. Initiation of parturition. Br Med Bull 1979; 35 (2) 145-150
  • 67 Liggins GC. Endocrinology of parturition. In: Novy MJ, Resko JA, eds. Fetal Endocrinology: ORPRC Symposia on Primate Reproductive Biology. New York: Academic Press; 1981: 211
  • 68 Liggins GC, Fairclough RJ, Grieves SA, Kendall JZ, Knox BS. The mechanism of initiation of parturition in the ewe. Recent Prog Horm Res 1973; 29: 111-159
  • 69 Seidl DC, Hughes HC, Bertolet R, Lang CM. True pregnancy toxemia (preeclampsia) in the guinea pig (Cavia porcellus). Lab Anim Sci 1979; 29 (4) 472-478
  • 70 Jansson T, Persson E. Placental transfer of glucose and amino acids in intrauterine growth retardation: studies with substrate analogs in the awake guinea pig. Pediatr Res 1990; 28 (3) 203-208
  • 71 Kelleher MA, Palliser HK, Walker DW, Hirst JJ. Sex-dependent effect of a low neurosteroid environment and intrauterine growth restriction on foetal guinea pig brain development. J Endocrinol 2011; 208 (3) 301-309
  • 72 Dyson RM, Palliser HK, Kelleher MA, Hirst JJ, Wright IM. The guinea pig as an animal model for studying perinatal changes in microvascular function. Pediatr Res 2012; 71 (1) 20-24
  • 73 Campbell S, Diaz-Recasens J, Griffin DR , et al. New Doppler technique for assessing uteroplacental blood flow. Lancet 1983; 1 (8326, Pt 1): 675-677
  • 74 Joern H, Kahn N, Baumann M, Rath W, Schmid-Schoenbein H. Complexity analysis of placental blood flow in normal and high-risk pregnancies. Clin Hemorheol Microcirc 2002; 26 (4) 277-293
  • 75 Pretorius DH, Nelson TR, Baergen RN, Pai E, Cantrell C. Imaging of placental vasculature using three-dimensional ultrasound and color power Doppler: a preliminary study. Ultrasound Obstet Gynecol 1998; 12 (1) 45-49
  • 76 Abramowicz JS, Sheiner E. In utero imaging of the placenta: importance for diseases of pregnancy. Placenta 2007; 28 (Suppl A): S14-S22
  • 77 Thaler I, Manor D, Itskovitz J , et al. Changes in uterine blood flow during human pregnancy. Am J Obstet Gynecol 1990; 162 (1) 121-125
  • 78 Ragavendra N, Tarantal AF. Intervillous blood flow in the third trimester gravid rhesus monkey (Macaca mulatta): use of sonographic contrast agent and harmonic imaging. Placenta 2001; 22 (2–3) 200-205
  • 79 Arthuis CJ, Novell A, Escoffre JM, Patat F, Bouakaz A, Perrotin F. New insights into uteroplacental perfusion: quantitative analysis using Doppler and contrast-enhanced ultrasound imaging. Placenta 2013; 34 (5) 424-431
  • 80 Frias AE, Schabel MC, Roberts VH , et al. Using dynamic contrast-enhanced MRI to quantitatively characterize maternal vascular organization in the primate placenta. Magn Reson Med 2015; 73 (4) 1570-1578
  • 81 Levine D, Hulka CA, Ludmir J, Li W, Edelman RR. Placenta accreta: evaluation with color Doppler US, power Doppler US, and MR imaging. Radiology 1997; 205 (3) 773-776
  • 82 Palacios-Jaraquemada JM, Bruno CH, Martín E. MRI in the diagnosis and surgical management of abnormal placentation. Acta Obstet Gynecol Scand 2013; 92 (4) 392-397
  • 83 Podrasky AE, Javitt MC, Glanc P , et al. ACR appropriateness Criteria® second and third trimester bleeding. Ultrasound Q 2013; 29 (4) 293-301
  • 84 Francis ST, Duncan KR, Moore RJ, Baker PN, Johnson IR, Gowland PA. Non-invasive mapping of placental perfusion. Lancet 1998; 351 (9113) 1397-1399
  • 85 Gowland PA, Francis ST, Duncan KR , et al. In vivo perfusion measurements in the human placenta using echo planar imaging at 0.5 T. Magn Reson Med 1998; 40 (3) 467-473
  • 86 Moore RJ, Issa B, Tokarczuk P , et al. In vivo intravoxel incoherent motion measurements in the human placenta using echo-planar imaging at 0.5 T. Magn Reson Med 2000; 43 (2) 295-302
  • 87 Ong SS, Tyler DJ, Moore RJ , et al. Functional magnetic resonance imaging (magnetization transfer) and stereological analysis of human placentae in normal pregnancy and in pre-eclampsia and intrauterine growth restriction. Placenta 2004; 25 (5) 408-412
  • 88 Chalouhi GE, Deloison B, Siauve N , et al. Dynamic contrast-enhanced magnetic resonance imaging: definitive imaging of placental function?. Semin Fetal Neonatal Med 2011; 16 (1) 22-28
  • 89 Sørensen A, Peters D, Fründ E, Lingman G, Christiansen O, Uldbjerg N. Changes in human placental oxygenation during maternal hyperoxia estimated by blood oxygen level-dependent magnetic resonance imaging (BOLD MRI). Ultrasound Obstet Gynecol 2013; 42 (3) 310-314
  • 90 Panigel M, Wolf G, Zeleznick A. Magnetic resonance imaging of the placenta in rhesus monkeys, Macaca mulatta. J Med Primatol 1988; 17 (1) 3-18
  • 91 Kay HH, Knop RC, Mattison DR. Magnetic resonance imaging of monkey placenta with manganese enhancement. Am J Obstet Gynecol 1987; 157 (1) 185-189