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Introduction

Our understanding of the ultra-rare, complement-mediated
renal diseases atypical hemolytic uremic syndrome (aHUS)
and C3 glomerulopathy (C3G) has advanced tremendously in
the past 10 years. The discovery that genetic abnormalities
are central to disease pathology in the majority of patients
has been critical to improving patient outcomes. Here, we
review the genetic background of the complement-mediated
renal diseases and discuss howgenetic advances have shaped
both our understanding of the underlying pathology and
informed treatment options.

Alternate Complement Pathway

Dysregulation of the alternate complement pathway (AP) is
central to complement-mediated renal disease.1–4 The AP
plays a vital role in innate immunity, remaining constitutively
active, and acting as a first-line of defense against micro-
organisms. The normal activity of the AP requires the com-
plex interaction of an array of proteins. In the complement-

mediated renal diseases, normal function of one or more of
these proteins is lost. In the case of aHUS, the loss of
complement function is often due to a genetic mutation in
either a core complement enzyme protein ormore commonly
in a complement control protein. Less frequently, AP gene
mutations also play a role in C3G.

The first protein in the AP is complement component C3
(C3) (►Fig. 1). C3 undergoes spontaneous hydrolysis or can be
cleaved by a downstream enzyme known as the C3 conver-
tase, producing the C3 breakdown products C3a (an anaphy-
lotoxin) and C3b. The cleavage product C3b interacts with
complement factor B (FB) to produce a proenzyme (C3bB). FB
will be cleaved by complement factor D (FD) to form the active
enzyme, C3 convertase (C3bBb). The C3 convertase cleaves
additional C3 into C3a and C3b, thus forming an amplification
loop of the AP. An additional C3b bindswith the C3 convertase
to form the C5 convertase (C3bBbC3b). The C5 convertase
serves to cleave C5 into C5a, another anaphylotoxin, and C5b.
C5b recruits the terminal complement proteins C6 thru C9 to
form the membrane attack complex (MAC). The MAC forms a
transmembrane channel in the wall of an invading
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microorganism, disrupting the integrity of its cell wall, lead-
ing to cell lysis and death. Self-cells are normally protected
fromMAC by complement control proteins. When AP control
is lost, MAC induced damage to self may occur. The role of the
anaphylotoxins and their receptors in further potentiating
disease is an area of continued research.

DNA variants that disrupt the normal control of this
sequence of events, or that lead to a loss of self-protection
from complement activation precipitate the complement-
mediated renal diseases. Both complement protein deficien-
cy, and normal quantity, abnormal function, protein states
have been identified and play a role in aHUS and C3G.

Atypical Hemolytic Uremic Syndrome

aHUS is the prototypical ultra-rare complement-mediated
renal disease. Of the diseases in which complement plays a
role, this disease is the one with the greatest likelihood to be
driven by a genetic mutation. While the incidence is un-
known, it is likely to be on the order of 2 to 5 per million

population.5 Before the current decade, our limited under-
standing of the underlying pathology of aHUS meant that it
was often a rapidly progressive condition that lead to renal
failure and even death—with only marginal response to
available therapies. Genetic advances have not only identified
causative proteins, but have also laid the groundwork for a
targeted, effective treatment strategy.

Genetic mutations are reported to be causal in up to 60% of
aHUS patients.1–3 The vast majority of the mutations associ-
atedwith aHUS occur in heterozygosity, in genes encoding AP
regulatory proteins. Complement factor H gene mutations
(CFH) are themost abundant.6–25 FH plays a significant role in
protecting host cells from MAC.26–28 Found both as a circu-
lating protein and on thehost cell surfaces, FH has threemajor
host-cell protective functions. It serves to suppress comple-
ment activity on human surfaces by competing with comple-
ment FB for binding to C3b (►Fig. 1) and preventing the
formation of the C3 convertase and therefore AP amplifica-
tion. Once the C3 convertase is formed, FH serves to accelerate
its decay. Finally, FH functions as a cofactor for complement

Fig. 1 The alternate complement pathway. The alternative complement cascade is constitutively active. C3 is spontaneously cleaved to C3b
which then can enter into the C3 amplification loop in which C3 convertase (C3bBb) is generated and subsequently cleaves additional C3 into C3a
and C3b leading to rapid amplification of C3b. C3b binds to C3 convertase to form C5 convertase (C3bBbC3b) which then enters the terminal
complement cascade in which C5 forms C5a, an anaphylotoxin, and C5b which goes on to form the membrane attack complex. Regulation of the
alternative complement cascade is controlled with CFH down regulation of the C3 amplification loop and through FI mediated inactivation of C3 to
iC3b. Additionally MCP and THBD act to negatively regulate the alternate pathway at the level of the endothelium. These proteins which serve to
inhibit the alternative pathway are labeled in red. CFB, which is cleaved by CFD, serve to generate C3 convertase in the C3 amplification loop.
C3NeFs are autoantibodies which stabilize the amplification loop and result in persistent activation of the alternative pathway. The proteins
involved in activation of the alternative pathway are labeled in green. C3, complement C3; C3NeF, C3 nephritic factor; CFB, complement factor B;
CFD, complement factor D; CFH, complement factor H; CFI, complement factor I; MCP, membrane cofactor protein; THBD, thrombomodulin.

Journal of Pediatric Genetics Vol. 5 No. 1/2016

Genetics of Rare Renal Disease Muff-Luett, Nester34

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



factor I (FI), facilitating cleavage of C3b into its inactive form,
iC3b. Disruption of one or more of these roles as a result of
mutation may lead to complement-mediated renal disease.

The CFH aHUS mutation database (available at: www.FH-
HUS.org) indicates that to date 315 CFHmutations have been
identified in aHUS patients. FH is composed of 20 protein
subunits or short consensus repeat domains (SCRs) that are
encoded by chromosome 1q32 in the regulators of comple-
ment gene cluster. While mutations have been identified in
several CFH SCRs, the fact that the majority are in the C-
terminal end of the protein in aHUS provides an interesting
phenotype–genotype correlation. The C-terminus contains
the cell-surface binding domain. Binding of FH to cell-surface
glycosaminoglycans via a C-terminus SCR facilitates surface
protection from complement activation. A DNA variant that
interferes with the cell-surface binding of FH, may directly
affect FH ability to protect host cells from complement
activity.

The regulators of complement gene region also contain a
series of genes known as the complement factor H-related
genes (CFHR1–5). While complement regulatory functions
have been attributed to the protein products,29–41more study
is required to fully understand the role of each gene. One of
the clearest roles for pathology in this setting is related to the
similarity of these genes to CFH. Both CFH and the CFHR genes
are made of repeating, homologous elements. The homology
makes this region prone to rearrangements from nonhomol-
ogous recombination. The impact of recombination depends

on the location of the recombination event and the function of
the genes involved. The CFHR have far fewer SCR than CFH.
During recombination regulatory domains do not match up
perfectly or they are completely absent in the CFHR. ►Fig. 2

portrays the normal regulators of complement region
(►Fig. 2A) and the identified recombination events that
have led to fusion proteins (►Fig. 2B–E). The new SCR
configuration (fusion gene) leads to a product with altered
protein function. If a fusion protein results in an altered FH
function—protection from AP activity may be lost and risk for
disease results.

A new role in complement dysregulation has recently been
described for the CFHR. It has been demonstrated that the
homology of SCRs 1 and 2 of the CFHR1, CFHR2, and CFHR5
genes facilitates the formation of both homodimers and
heterodimers.42 The heterodimers that have been identified
include FHR1–FHR2 and FHR1–FHR5.32,43 It has been hypoth-
esized that these dimers bind C3b more effectively the FH yet
do not have the same regulatory properties of FH. The
functional result of competing with FH binding is an AP
that is not regulated normally.

The homozygous deletion of the CFHR3 and CFHR1 genes is
not considered a mutation, but is instead a common poly-
morphism (present in 2–9% of Europeans, 16% of Africans, and
�2% of Chinese44). However, for unclear reasons, there is a
strong association of this genetic change with the production
of autoantibodies to FH.2,45–54 Around 90 to 95% of the
patients with anti-FH antibodies have a complete deficiency

Fig. 2 Abnormal gene arrangements in the CFH-CFHR Region. The five CFHR genes are found in a tandem arrangement on the long arm of
chromosome 1. Genomic duplication has led to a high sequence similarity between CFH and the CFHR genes. Sequence homology in turn results in
nonallelic homologous recombination events, frequently leading to genomic changes, including deletions, duplications, and rearrangements.
The most frequent change is the deletion of CFHR3/CFHR1. Abnormal fusion genes (triggering abnormal protein products) may also result.
Nonhomologous recombination events can lead to gene deletions (B, C, D, and F), duplications (E), and hybrid genes (B, E, and F). The functional
consequences at the protein level can vary and includes protein deficiency and variable function hybrid proteins. Normal gene sequence (A). CFH,
complement factor H; CFHR, complement factor H related.
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of FH-related proteins 3 (FHR3) and 1 (FHR1). FH autoanti-
bodies interfere with normal FH function and account for up
to 8% of aHUS cases.

In addition to CFH gene mutations are mutations in the
complement genes CFI, CFB,MCP, THBD, and C3. FI plays a role
in inactivating C3b and therefore limiting C3 convertase
activity. Mutations in CFI have been estimated to occur in
approximately 8% of aHUS patients.1–3,53 FB is an integral
protein of the C3 convertase. Mutations in CFB are classically
gain-of-function mutations (facilitating an overactive C3
convertase) and account for about 1 to 4% of aHUS.1–3,55–58

Mutations in membrane cofactor protein (MCP), the gene
product of which is a cell-surface complement control protein
similar to FH occurs in 5 to 9%.1–3,59,60 Gene mutations in the
thrombomodulin gene, the protein product of which is
responsible for inactivating the AP anaphylotoxins C3a and
C5a have been found in up to 5% of the aHUS population.1–3

C3, a central AP complement proteinmay also be abnormal in
aHUS. Mutations in C3, like those in CFB are often gain-of-
function mutations and occur in 2 to 8% of the aHUS
population.1–3,53

Altogether, these genetic defects result in excessive or
amplified activity of the AP, ultimately resulting in the
cleavage of C5. The cleavage of C5, as described previously,
leads to the liberation both of C5a and of MAC at the
endothelial cell surface. As endothelial injury ensues, a com-
plement-mediated thrombotic microangiopathy (TMA) de-
velops, precipitating the risk for the multiorgan dysfunction
that is characteristic of severe aHUS.

Defining aHUS as a disease of AP dysregulation has led to
the discovery of the first effective pharmaceutical for the
treatment of aHUS. Eculizumab, an anti-C5 monoclonal
protein that inhibits the cleavage of C5 can limit the
production of C5b and the subsequent downstream pro-
duction of MAC. aHUS provides one of the best examples of
how genetic studies have not only provided a clearer
understanding of underlying pathology but have also led
to a precise treatment strategy. Importantly, inhibition of
the cleavage of C5 has become the most effective treatment
for aHUS to date.

The genetic investigation of aHUS patients has also includ-
ed noncomplement genes. Bu et al have identified several
coagulation pathway gene variants in aHUS patients.61 They
identified abnormalities in the plasminogen gene (the gene
that encodes plasminogen, the precursor of plasmin—in-
volved in thrombin lysis) and the ADAMTS13 gene (the
gene for the a disintegrin and metalloproteinase with a
thrombospondin type 1 motif, member 13 protein)62. The
discovery of ADAMTS-13 variants in aHUS is interesting as
abnormalities in this gene are classically associated with
thrombotic thrombocytopenic purpura (TTP). The authors
reported that 83% of the aHUS cohort carried at least one
variation of ADAMTS13 and 38% had multiple ADAMTS-13
variations. Consistent with a possible functional effect of
these DNA variations is the fact that aHUS patients have
been shown to have reduced levels of ADAMTS-13 during
acute disease. The precise role of ADAMTS-13 and plasmino-
gen in aHUS remains to be defined.

The newest gene to be reported in associationwith aHUS is
the gene encoding diacylglycerol kinase-epsilon (DGKE), a
protein of the lipid kinase family.63,64 This protein is ex-
pressed in the endothelium, on platelets and on podocytes.
The aHUS clinical picture may be triggered by the activation
of protein kinase C secondary to the loss of DGKE function,
leading to an upregulation of prothrombotic factors and
platelet activation. New evidence suggests that gene abnor-
malities may facilitate endothelial injury and thus set off a
cascade leading to the characteristic TMA of aHUS.65

Secondary Thrombotic Microangiopathies
TMAs other than aHUS are major confounders for the diag-
nosis of aHUS. Because of the clinical similarity of these
diseases with aHUS, it has been hypothesized that a genetic
risk also exists for these diseases.

The termTMA is used to refer to anydisorder characterized
by endothelial cell injury, leading to an arteriolar and capil-
lary thrombosis. The clinical criteria for a TMA include the
clinical triad of hemolytic anemia, thrombocytopenia, and
organ dysfunction; mainly renal injury or failure. Secondary
TMAs are due to several underlying causes, including infec-
tion with enterohemorrhagic Escherichia coli, pregnancy,
organ transplantation, hematopoietic stem-cell transplant
(HSCT), and drugs including calcineurin inhibitors and che-
motherapeutics. It remains unclear to what degree genetic
abnormalities (particularly in complement genes) play a role
in these diseases. Recent studies suggest, for instance, that
complement protein abnormalities may indeed be found in
the above diseases, however, when genetic investigations
have been completed, causal genetic abnormalities have not
been found, with very few exceptions (►Table 1). While it has
been hypothesized that there is a genetic predisposition to
the other TMAs, this hypothesis requires further study. Below,
we discuss briefly what is known about these other rare
genetic associations.

TTP is a TMA involving either a deficiencyof ADAMTS-13 (a
von Willebrand factor cleaving protease) or an inhibitor of
ADAMTS-13.66 TTP is often easily confused with aHUS or
other forms of TMA given the clinical picture of thrombocy-
topenia, microangiopathic hemolytic anemia, and acute kid-
ney injury.While TTP is most likely to be a disease that results
from autoantibody production to ADAMTS-13, in Upshaw–

Schulman, a congenital form of TTP with the same clinical
picture, more than 76 mutations have been reported.67 Of
note, along with the primary pathology involving ADAMTS-
13, complement activation represented by increased levels of
C3a and sMAC have been observed during the acute phase of
TTP, however, it has not been proven that this is related to a
genetic abnormality.68

Infectious TMA associatedwith clear renal failure (referred
to asHUS)most commonly includesHUSdue to infectionwith
Shiga toxin producing E. coli (ST-HUS) but can also result from
infections such as Streptococcus pneumoniae, Shigella, and
Campylobacter or viruses including cytomegalovirus, Ep-
stein-Barr virus, and the influenza viruses.While uncommon,
complement mutations have been described in ST-HUS pa-
tients.69 Similarly, three of five patients with pneumococcal
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HUS in one cohort carriedmutations in the common AP genes
CFH, CFI, and in THBD.70 Complement mutations in other
forms of infectious TMA have also been described, including
MCP mutations in influenza A, Bordetella pertussis, and
varicella zoster TMA, a CFH mutation in Bordetella TMA and
CFH autoantibodies in varicella zoster TMA.71–73 The rela-
tionship of these gene mutations with causality is unknown.

Complement dysregulation and known mutations in the
AP have also been described in solid organ transplant-related
TMA. CFH and CFI mutations were identified in 29% of
patients in a cohort of 24 kidney transplant recipients who
developed de novoTMA following transplant.74 The caveat to
interpreting this data are that it remains unclear whether
thesewere previously unidentified aHUS patients and exactly
what role the transplant played.

The evidence is less convincing in HSCT-associated TMA.
Jodele et al reported that five of six HSCT recipients had a
CFHR3–CFHR1 heterozygous gene deletion. While this statis-
tic is interesting,wemust keep inmind that the 3/1 deletion is
a polymorphism and not a causal DNA change. During the
time of their TMA, three patients in their cohort were also
found to have FH autoantibodies—suggesting that their dis-
ease was triggered by autoimmune-related complement dys-
regulation. No patients in the cohort had identifiable
mutations in CFI, CFH, MCP, CFB, or CFHR5 genes.75

The role of complement in pregnancy-related TMA re-
mains an area of interest. Pregnancy-related TTP cases tend
to occur in the second and third trimesters of pregnancy
due to a decrease in ADAMTS-13 activity presumably as a
result of increased release of VWF toward the end of
pregnancy.76 Alternatively, 21% of adult female aHUS pa-
tients present during pregnancy with approximately 80%
presenting during the postpartum period. A total of 86% of
these women had identified complement abnormalities.
Considering pregnancy and aHUS further, Fakhouri et al
reported in their cohort, aHUS was triggered by pregnancy
in 20% of patients with CFH mutations, 28% with C3, 11%
with CFI, and 17% with MCP mutations.77 More than one
mutation was seen in four aHUS patients presenting during
pregnancy. TMA during pregnancy has also been linked to
verotoxin exposure and vascular endothelial growth factor
(VEGF) deficiency.76

Many drugs have been reported to cause drug-induced
TMA including calcineurin inhibitors, mTOR inhibitors, qui-
nine, chemotherapy agents, VEGF inhibitors, antiplatelet
medications, and cocaine.78 It has been proposed that drug-
induced TMA results from an environmental trigger that
dysregulates complement in a genetically susceptible host.
Therehave only been a fewstudies to support this theory. One
was a report of four patients with ticlopidine-induced TMA.
All four patients were found to be deficient in ADAMTS-13
activity with ADAMTS-13 inhibitors and all four were found
to be homozygous or heterozygous for three different CFH
polymorphisms, two with known functional significance.79

Another report describes a 2-year-oldmale patient with likely
cisplatin-induced TMAwhowas found to have a heterozygous
MCP splice mutation. This patient exhibited clinical improve-
ment with eculizumab therapy.80

In the absence of confirmed genetic mutations in the
majority of the diseases that make up the secondary TMAs
(with the possible exception of pregnancy-associated TMA), it
remains impossible to label the majority of TMAs in these
settings as genetic-related rare disease.

C3 Glomerulopathy

C3G is another rare renal disease that involves the abnormal
regulation of the AP. In this setting, disease is not manifest by
a TMA, but rather the deposition of C3 breakdown products
within the glomeruli of the kidney. The pathological term
used to describe this entity is C3-dominant glomerulonephri-
tis81 with the disease syndrome being called C3G. C3G
includes dense deposit disease (DDD) and C3 glomerulone-
phritis (C3GN). DDD is diagnosedwhen linear electron-dense
deposits are found within the lamina densa (middle layer) of
the glomerular basement membrane on electron microscopy
in the setting of a C3-dominant glomerulonephritis. C3GN is
used to designate the remainder of cases of C3G and in general
represents thosewith less dense deposits by electronmicros-
copy. C3GN deposits may involve any combination of mesan-
gial, subepithelial, subendothelial, and less discrete,
discontinuous intramembranous deposits.81

As with aHUS, C3G is an ultra-rare disease. The incidence
of biopsy-proven C3G is estimated to be 1 to 2 per million
with equal incidence in both the sexes.82 Those affected tend
to be children and young adults.82 The disease presentation
encompasses a spectrum from a relatively mild glomerulone-
phritis to a severe, rapidly progressive disease that may lead
quickly to end-stage kidney disease. There are currently no
reliable treatment options for C3G, making this an area ripe
for continued genetic and translational research.

While autoimmunity to the C3 convertase (the so called
“C3 nephritic factor”—present in up to 85% of the patients) is
believed to be central to disease for the majority of C3G
patients, complement gene abnormalities play a pathological
role in C3G also. Servais et al studied a series of 134 patients
with idiopathic membranoproliferative glomerulonephritis
type I (another form of primary glomerulonephritis, n ¼ 48),
DDD (n ¼ 29), and C3GN (n ¼ 56). Mutation screening of the
complement genes revealed mutations in CFH in 17 (12.7%),
CFI in 6 (4.5%), and MCP in 1 (0.7%).4,83

DDD more specifically has been shown to be associated
with mutations in C3, CFH, and the CFHR genes.84 Five of 29
DDD patients were reported to have mutations within the
CFH gene in the 2012 Servais et al study.4 One of which had
been described previously in aHUS.85 Martinez-Barricarte et
al identified a gain-of-function C3mutation in a familial case
of C3G.86 The authors demonstrated that the C3 mutation
conferred resistance to AP regulation. Abrera-Abeleda et al
have identified complement gene mutations in 66 patients
with biopsy-proven DDD.87 In addition, in this cohort, the
authors identified four novel sequence variants in ADAMTS-
19 (another member of the disintegrin and metalloprotease
family), C3aR1 (complement component 3a receptor), CR1
(complement receptor type 1), and C3. The functional signifi-
cance of the latter gene findings is unknown.
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As in aHUS, the FHR proteins play a role in the pathogene-
sis of DDD.43 A familial mutation in CFHR1was found to result
in the duplication of the N-terminus SCR domains. The result
was a mutant FHR1 protein, capable of forming unusually
largemultimeric complexes. These complexes exhibited com-
petition with FH and led to dysregulation of the AP.43 Simi-
larly, Chen et al described a chromosomal deletion in the
CFHR gene cluster in familial DDD which resulted in a FHR2–
FHR5 hybrid protein capable of stabilizing the C3 convertase,
and reducing FH-mediated decay.88 CFHR5 polymorphisms
have been described in DDD, however, the functional signifi-
cance of these polymorphisms remains unclear.89

Similar gene abnormalities are also present in the C3GN form
of C3G. In the Servais et al study, 7 of 56 patients with C3GN
diagnosed by biopsy were identified to have CFH mutations.4

Additionally, three of the C3GN patients were found to have
mutations in CFI, all of which had been previously described in
aHUS and one patient with a mutation in MCP.4

The CFHR genes also play a role in C3GN. Gale et alwere the
first to report on CFHR5 nephropathy, an autosomal domi-
nant familial C3G in patients of Cypriot descent. The authors
identified an internal duplication of exons 2 and 3 of CFHR5
which segregatedwith a C3-dominant glomerulonephritis on
biopsy.90,91 A familial C3GN involving CFHR5 in families of
non-Cypriot descent has also been identified.92

The homology in the CFHR region plays a role in the C3GN
setting.93 A familial case of C3G highlighted a rearrangement
within the CFHR locus resulting in a hybrid CFHR3–CFHR1 gene
whose product appeared to have a competitive function with
FH.94Another case study identified a CFHR1duplication, capable
of forming multimers with enhanced binding of CFHR1 to C3b,
iC3b and C3 dg, thus altering normal AP activity.43

In the absence of overt geneticmutation in some (particularly
DDD patients), the data support the presence of a “complo-
type.”87,95–97 The complotype is an inherited set of common
polymorphisms in complement proteins that predict suscepti-
bility to inflammatory or infectious diseases. These are not
mutations but are rather risk factors for the development of
the disease. There is evidence that they have an impact on
susceptibility to inflammatory and infectious disease.

Conclusion

Here, we provide a comprehensive review of the contribution
of genetics to our understanding of complement-mediated
renal disease. Additional genetic discoveries are sure to
follow, however, it is clear that the genetics of complement
are becoming the key to both accurate diagnosis and targeted
therapy for these rare, previously untreatable diseases. This
set of diseases provides a clear example of the power of
genetics in improving the outcome of patients with rare
disease.
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