Semin Thromb Hemost 2016; 42(04): 408-421
DOI: 10.1055/s-0036-1579635
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Fibrinogen Is at the Interface of Host Defense and Pathogen Virulence in Staphylococcus aureus Infection

Ya-Ping Ko
1   Center for Infectious and Inflammatory Diseases, Institute for Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
,
Matthew J. Flick
2   Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
› Author Affiliations
Further Information

Publication History

Publication Date:
07 April 2016 (online)

Abstract

Fibrinogen not only plays a pivotal role in hemostasis but also serves key roles in antimicrobial host defense. As a rapidly assembled provisional matrix protein, fibrin(ogen) can function as an early line of host protection by limiting bacterial growth, suppressing dissemination of microbes to distant sites, and mediating host bacterial killing. Fibrinogen-mediated host antimicrobial activity occurs predominantly through two general mechanisms, namely, fibrin matrices functioning as a protective barrier and fibrin(ogen) directly or indirectly driving host protective immune function. The potential of fibrin to limit bacterial infection and disease has been countered by numerous bacterial species evolving and maintaining virulence factors that engage hemostatic system components within vertebrate hosts. Bacterial factors have been isolated that simply bind fibrinogen or fibrin, promote fibrin polymer formation, or promote fibrin dissolution. Staphylococcus aureus is an opportunistic gram-positive bacterium, the causative agent of a wide range of human infectious diseases, and a prime example of a pathogen exquisitely sensitive to host fibrinogen. Indeed, current data suggest fibrinogen serves as a context-dependent determinant of host defense or pathogen virulence in Staphylococcus infection whose ultimate contribution is dictated by the expression of S. aureus virulence factors, the path of infection, and the tissue microenvironment.

 
  • References

  • 1 Fish RJ, Neerman-Arbez M. Fibrinogen gene regulation. Thromb Haemost 2012; 108 (3) 419-426
  • 2 Pottinger BE, Read RC, Paleolog EM, Higgins PG, Pearson JD. von Willebrand factor is an acute phase reactant in man. Thromb Res 1989; 53 (4) 387-394
  • 3 Begbie M, Notley C, Tinlin S, Sawyer L, Lillicrap D. The Factor VIII acute phase response requires the participation of NFkappaB and C/EBP. Thromb Haemost 2000; 84 (2) 216-222
  • 4 Dofferhoff AS, Bom VJ, de Vries-Hospers HG , et al. Patterns of cytokines, plasma endotoxin, plasminogen activator inhibitor, and acute-phase proteins during the treatment of severe sepsis in humans. Crit Care Med 1992; 20 (2) 185-192
  • 5 Ji Y, Fish PM, Strawn TL , et al. C-reactive protein induces expression of tissue factor and plasminogen activator inhibitor-1 and promotes fibrin accumulation in vein grafts. J Thromb Haemost 2014; 12 (10) 1667-1677
  • 6 Koyama K, Madoiwa S, Nunomiya S , et al. Combination of thrombin-antithrombin complex, plasminogen activator inhibitor-1, and protein C activity for early identification of severe coagulopathy in initial phase of sepsis: a prospective observational study. Crit Care 2014; 18 (1) R13
  • 7 Yende S, D'Angelo G, Mayr F , et al; GenIMS Investigators. Elevated hemostasis markers after pneumonia increases one-year risk of all-cause and cardiovascular deaths. PLoS ONE 2011; 6 (8) e22847
  • 8 Milbrandt EB, Reade MC, Lee M , et al; GenIMS Investigators. Prevalence and significance of coagulation abnormalities in community-acquired pneumonia. Mol Med 2009; 15 (11–12) 438-445
  • 9 Gando S, Nanzaki S, Sasaki S, Kemmotsu O. Significant correlations between tissue factor and thrombin markers in trauma and septic patients with disseminated intravascular coagulation. Thromb Haemost 1998; 79 (6) 1111-1115
  • 10 Bokarewa MI, Tarkowski A. Thrombin generation and mortality during Staphylococcus aureus sepsis. Microb Pathog 2001; 30 (4) 247-252
  • 11 Starr ME, Takahashi H, Okamura D , et al. Increased coagulation and suppressed generation of activated protein C in aged mice during intra-abdominal sepsis. Am J Physiol Heart Circ Physiol 2015; 308 (2) H83-H91
  • 12 Kager LM, Wiersinga WJ, Roelofs JJ , et al. Endogenous tissue-type plasminogen activator impairs host defense during severe experimental Gram-negative sepsis (melioidosis)*. Crit Care Med 2012; 40 (7) 2168-2175
  • 13 Renckens R, Roelofs JJ, ter Horst SA , et al. Absence of thrombin-activatable fibrinolysis inhibitor protects against sepsis-induced liver injury in mice. J Immunol 2005; 175 (10) 6764-6771
  • 14 van Veen SQ, Cheung CW, Meijers JC, van Gulik TM, Boermeester MA. Anticoagulant and anti-inflammatory effects after peritoneal lavage with antithrombin in experimental polymicrobial peritonitis. J Thromb Haemost 2006; 4 (11) 2343-2351
  • 15 Levi M. The diagnosis of disseminated intravascular coagulation made easy. Neth J Med 2007; 65 (10) 366-367
  • 16 Levi M. Disseminated intravascular coagulation. Crit Care Med 2007; 35 (9) 2191-2195
  • 17 Levi M, van der Poll T. Inflammation and coagulation. Crit Care Med 2010; 38 (2, Suppl): S26-S34
  • 18 Flick MJ, Du X, Witte DP , et al. Leukocyte engagement of fibrin(ogen) via the integrin receptor alphaMbeta2/Mac-1 is critical for host inflammatory response in vivo. J Clin Invest 2004; 113 (11) 1596-1606
  • 19 Goguen JD, Bugge T, Degen JL. Role of the pleiotropic effects of plasminogen deficiency in infection experiments with plasminogen-deficient mice. Methods 2000; 21 (2) 179-183
  • 20 Mullarky IK, Szaba FM, Berggren KN , et al. Infection-stimulated fibrin deposition controls hemorrhage and limits hepatic bacterial growth during listeriosis. Infect Immun 2005; 73 (7) 3888-3895
  • 21 Sun H, Wang X, Degen JL, Ginsburg D. Reduced thrombin generation increases host susceptibility to group A streptococcal infection. Blood 2009; 113 (6) 1358-1364
  • 22 Engel LS, Hill JM, Caballero AR, Green LC, O'Callaghan RJ. Protease IV, a unique extracellular protease and virulence factor from Pseudomonas aeruginosa. J Biol Chem 1998; 273 (27) 16792-16797
  • 23 Hartford OM, Wann ER, Höök M, Foster TJ. Identification of residues in the Staphylococcus aureus fibrinogen-binding MSCRAMM clumping factor A (ClfA) that are important for ligand binding. J Biol Chem 2001; 276 (4) 2466-2473
  • 24 Ringnér M, Valkonen KH, Wadström T. Binding of vitronectin and plasminogen to Helicobacter pylori. FEMS Immunol Med Microbiol 1994; 9 (1) 29-34
  • 25 Korhonen TK. Fibrinolytic and procoagulant activities of Yersinia pestis and Salmonella enterica. J Thromb Haemost 2015; 13 (Suppl. 01) S115-S120
  • 26 Marcum JA, Kline DL. Species specificity of streptokinase. Comp Biochem Physiol B 1983; 75 (3) 389-394
  • 27 McCoy HE, Broder CC, Lottenberg R. Streptokinases produced by pathogenic group C streptococci demonstrate species-specific plasminogen activation. J Infect Dis 1991; 164 (3) 515-521
  • 28 Schroeder B, Boyle MD, Sheerin BR, Asbury AC, Lottenberg R. Species specificity of plasminogen activation and acquisition of surface-associated proteolytic activity by group C streptococci grown in plasma. Infect Immun 1999; 67 (12) 6487-6495
  • 29 Sun H, Ringdahl U, Homeister JW , et al. Plasminogen is a critical host pathogenicity factor for group A streptococcal infection. Science 2004; 305 (5688) 1283-1286
  • 30 Davies WA, Ackerman VP, Nelson DS. Mechanism for nonspecific immunity of Listeria monocytogenes in rats mediated by platelets and the clotting system. Infect Immun 1981; 33 (2) 477-481
  • 31 Rubel C, Fernández GC, Dran G, Bompadre MB, Isturiz MA, Palermo MS. Fibrinogen promotes neutrophil activation and delays apoptosis. J Immunol 2001; 166 (3) 2002-2010
  • 32 Rubel C, Fernández GC, Rosa FA , et al. Soluble fibrinogen modulates neutrophil functionality through the activation of an extracellular signal-regulated kinase-dependent pathway. J Immunol 2002; 168 (7) 3527-3535
  • 33 Sitrin RG, Pan PM, Srikanth S, Todd III RF. Fibrinogen activates NF-kappa B transcription factors in mononuclear phagocytes. J Immunol 1998; 161 (3) 1462-1470
  • 34 Forsyth CB, Solovjov DA, Ugarova TP, Plow EF. Integrin alpha(M)beta(2)-mediated cell migration to fibrinogen and its recognition peptides. J Exp Med 2001; 193 (10) 1123-1133
  • 35 Shi C, Zhang X, Chen Z, Robinson MK, Simon DI. Leukocyte integrin Mac-1 recruits toll/interleukin-1 receptor superfamily signaling intermediates to modulate NF-kappaB activity. Circ Res 2001; 89 (10) 859-865
  • 36 Tuluc F, Garcia A, Bredetean O, Meshki J, Kunapuli SP. Primary granule release from human neutrophils is potentiated by soluble fibrinogen through a mechanism depending on multiple intracellular signaling pathways. Am J Physiol Cell Physiol 2004; 287 (5) C1264-C1272
  • 37 Podolnikova NP, Yakovlev S, Yakubenko VP, Wang X, Gorkun OV, Ugarova TP. The interaction of integrin αIIbβ3 with fibrin occurs through multiple binding sites in the αIIb β-propeller domain. J Biol Chem 2014; 289 (4) 2371-2383
  • 38 Zhang P, Ozdemir T, Chung CY, Robertson GP, Dong C. Sequential binding of αVβ3 and ICAM-1 determines fibrin-mediated melanoma capture and stable adhesion to CD11b/CD18 on neutrophils. J Immunol 2011; 186 (1) 242-254
  • 39 Ugarova TP, Lishko VK, Podolnikova NP , et al. Sequence gamma 377-395(P2), but not gamma 190-202(P1), is the binding site for the alpha MI-domain of integrin alpha M beta 2 in the gamma C-domain of fibrinogen. Biochemistry 2003; 42 (31) 9365-9373
  • 40 Podolnikova NP, Yakubenko VP, Volkov GL, Plow EF, Ugarova TP. Identification of a novel binding site for platelet integrins alpha IIb beta 3 (GPIIbIIIa) and alpha 5 beta 1 in the gamma C-domain of fibrinogen. J Biol Chem 2003; 278 (34) 32251-32258
  • 41 Corbett SA, Schwarzbauer JE. Requirements for alpha(5)beta(1) integrin-mediated retraction of fibronectin-fibrin matrices. J Biol Chem 1999; 274 (30) 20943-20948
  • 42 Yokoyama K, Zhang XP, Medved L, Takada Y. Specific binding of integrin alpha v beta 3 to the fibrinogen gamma and alpha E chain C-terminal domains. Biochemistry 1999; 38 (18) 5872-5877
  • 43 Gailit J, Clarke C, Newman D, Tonnesen MG, Mosesson MW, Clark RA. Human fibroblasts bind directly to fibrinogen at RGD sites through integrin alpha(v)beta3. Exp Cell Res 1997; 232 (1) 118-126
  • 44 Bach TL, Barsigian C, Chalupowicz DG , et al. VE-Cadherin mediates endothelial cell capillary tube formation in fibrin and collagen gels. Exp Cell Res 1998; 238 (2) 324-334
  • 45 Bach TL, Barsigian C, Yaen CH, Martinez J. Endothelial cell VE-cadherin functions as a receptor for the beta15-42 sequence of fibrin. J Biol Chem 1998; 273 (46) 30719-30728
  • 46 Pillay J, Kamp VM, Pennings M , et al. Acute-phase concentrations of soluble fibrinogen inhibit neutrophil adhesion under flow conditions in vitro through interactions with ICAM-1 and MAC-1 (CD11b/CD18). J Thromb Haemost 2013; 11 (6) 1172-1182
  • 47 Kim S, Nadel JA. Fibrinogen binding to ICAM-1 promotes EGFR-dependent mucin production in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2009; 297 (1) L174-L183
  • 48 Duperray A, Languino LR, Plescia J , et al. Molecular identification of a novel fibrinogen binding site on the first domain of ICAM-1 regulating leukocyte-endothelium bridging. J Biol Chem 1997; 272 (1) 435-441
  • 49 Altieri DC, Duperray A, Plescia J, Thornton GB, Languino LR. Structural recognition of a novel fibrinogen gamma chain sequence (117-133) by intercellular adhesion molecule-1 mediates leukocyte-endothelium interaction. J Biol Chem 1995; 270 (2) 696-699
  • 50 Yakovlev S, Gao Y, Cao C , et al. Interaction of fibrin with VE-cadherin and anti-inflammatory effect of fibrin-derived fragments. J Thromb Haemost 2011; 9 (9) 1847-1855
  • 51 Busso N, Péclat V, Van Ness K , et al. Exacerbation of antigen-induced arthritis in urokinase-deficient mice. J Clin Invest 1998; 102 (1) 41-50
  • 52 Pawlinski R, Pedersen B, Schabbauer G , et al. Role of tissue factor and protease-activated receptors in a mouse model of endotoxemia. Blood 2004; 103 (4) 1342-1347
  • 53 Adams RA, Bauer J, Flick MJ , et al. The fibrin-derived gamma377-395 peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease. J Exp Med 2007; 204 (3) 571-582
  • 54 Flick MJ, LaJeunesse CM, Talmage KE , et al. Fibrin(ogen) exacerbates inflammatory joint disease through a mechanism linked to the integrin alphaMbeta2 binding motif. J Clin Invest 2007; 117 (11) 3224-3235
  • 55 Steinbrecher KA, Horowitz NA, Blevins EA , et al. Colitis-associated cancer is dependent on the interplay between the hemostatic and inflammatory systems and supported by integrin alpha(M)beta(2) engagement of fibrinogen. Cancer Res 2010; 70 (7) 2634-2643
  • 56 Sodeinde OA, Subrahmanyam YV, Stark K, Quan T, Bao Y, Goguen JD. A surface protease and the invasive character of plague. Science 1992; 258 (5084) 1004-1007
  • 57 Degen JL, Bugge TH, Goguen JD. Fibrin and fibrinolysis in infection and host defense. J Thromb Haemost 2007; 5 (Suppl. 01) 24-31
  • 58 Luo D, Szaba FM, Kummer LW , et al. Protective roles for fibrin, tissue factor, plasminogen activator inhibitor-1, and thrombin activatable fibrinolysis inhibitor, but not factor XI, during defense against the gram-negative bacterium Yersinia enterocolitica. J Immunol 2011; 187 (4) 1866-1876
  • 59 Lowy FD. Staphylococcus aureus infections. N Engl J Med 1998; 339 (8) 520-532
  • 60 Active Bacterial Core Surveillance Report. Emerging Infections Program Network . Methicillin-resistant Staphylococcus aureus 2012
  • 61 Grundmann H, Aanensen DM, van den Wijngaard CC, Spratt BG, Harmsen D, Friedrich AW ; European Staphylococcal Reference Laboratory Working Group. Geographic distribution of Staphylococcus aureus causing invasive infections in Europe: a molecular-epidemiological analysis. PLoS Med 2010; 7 (1) e1000215
  • 62 Dulon M, Peters C, Schablon A, Nienhaus A. MRSA carriage among healthcare workers in non-outbreak settings in Europe and the United States: a systematic review. BMC Infect Dis 2014; 14: 363
  • 63 Stryjewski ME, Corey GR. Methicillin-resistant Staphylococcus aureus: an evolving pathogen. Clin Infect Dis 2014; 58 (Suppl. 01) S10-S19
  • 64 Nair R, Ammann E, Rysavy M, Schweizer ML. Mortality among patients with methicillin-resistant Staphylococcus aureus USA300 versus non-USA300 invasive infections: a meta-analysis. Infect Control Hosp Epidemiol 2014; 35 (1) 31-41
  • 65 Paterson GK, Harrison EM, Holmes MA. The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends Microbiol 2014; 22 (1) 42-47
  • 66 Iwamoto M, Mu Y, Lynfield R , et al. Trends in invasive methicillin-resistant Staphylococcus aureus infections. Pediatrics 2013; 132 (4) e817-e824
  • 67 Dunn DL, Simmons RL. Fibrin in peritonitis. III. The mechanism of bacterial trapping by polymerizing fibrin. Surgery 1982; 92 (3) 513-519
  • 68 Kapral FA. Clumping of Staphylococcus aureus in the peritoneal cavity of mice. J Bacteriol 1966; 92 (4) 1188-1195
  • 69 Leak LV. Interaction of mesothelium to intraperitoneal stimulation. I. Aggregation of peritoneal cells. Lab Invest 1983; 48 (4) 479-491
  • 70 Woolverton CJ, Huebert K, Burkhart B, MacPhee M. Subverting bacterial resistance using high dose, low solubility antibiotics in fibrin. Infection 1999; 27 (1) 28-33
  • 71 Prasad JM, Gorkun OV, Raghu H , et al. Mice expressing a mutant form of fibrinogen that cannot support fibrin formation exhibit compromised antimicrobial host defense. Blood 2015; 126 (17) 2047-2058
  • 72 Mullins ES, Kombrinck KW, Talmage KE , et al. Genetic elimination of prothrombin in adult mice is not compatible with survival and results in spontaneous hemorrhagic events in both heart and brain. Blood 2009; 113 (3) 696-704
  • 73 Cheng AG, McAdow M, Kim HK, Bae T, Missiakas DM, Schneewind O. Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLoS Pathog 2010; 6 (8) e1001036
  • 74 Foster TJ, Höök M. Surface protein adhesins of Staphylococcus aureus. Trends Microbiol 1998; 6 (12) 484-488
  • 75 Loughman A, Fitzgerald JR, Brennan MP , et al. Roles for fibrinogen, immunoglobulin and complement in platelet activation promoted by Staphylococcus aureus clumping factor A. Mol Microbiol 2005; 57 (3) 804-818
  • 76 McAdow M, DeDent AC, Emolo C , et al. Coagulases as determinants of protective immune responses against Staphylococcus aureus. Infect Immun 2012; 80 (10) 3389-3398
  • 77 McDevitt D, Nanavaty T, House-Pompeo K , et al. Characterization of the interaction between the Staphylococcus aureus clumping factor (ClfA) and fibrinogen. Eur J Biochem 1997; 247 (1) 416-424
  • 78 Panizzi P, Friedrich R, Fuentes-Prior P, Richter K, Bock PE, Bode W. Fibrinogen substrate recognition by staphylocoagulase.(pro)thrombin complexes. J Biol Chem 2006; 281 (2) 1179-1187
  • 79 Guggenberger C, Wolz C, Morrissey JA, Heesemann J. Two distinct coagulase-dependent barriers protect Staphylococcus aureus from neutrophils in a three dimensional in vitro infection model. PLoS Pathog 2012; 8 (1) e1002434
  • 80 Foster TJ, Geoghegan JA, Ganesh VK, Höök M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 2014; 12 (1) 49-62
  • 81 Patti JM, Allen BL, McGavin MJ, Höök M. MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol 1994; 48: 585-617
  • 82 Deivanayagam CC, Wann ER, Chen W , et al. A novel variant of the immunoglobulin fold in surface adhesins of Staphylococcus aureus: crystal structure of the fibrinogen-binding MSCRAMM, clumping factor A. EMBO J 2002; 21 (24) 6660-6672
  • 83 Ton-That H, Liu G, Mazmanian SK, Faull KF, Schneewind O. Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proc Natl Acad Sci U S A 1999; 96 (22) 12424-12429
  • 84 Ponnuraj K, Bowden MG, Davis S , et al. A “dock, lock, and latch” structural model for a staphylococcal adhesin binding to fibrinogen. Cell 2003; 115 (2) 217-228
  • 85 Wann ER, Gurusiddappa S, Hook M. The fibronectin-binding MSCRAMM FnbpA of Staphylococcus aureus is a bifunctional protein that also binds to fibrinogen. J Biol Chem 2000; 275 (18) 13863-13871
  • 86 Kloczewiak M, Timmons S, Bednarek MA, Sakon M, Hawiger J. Platelet receptor recognition domain on the gamma chain of human fibrinogen and its synthetic peptide analogues. Biochemistry 1989; 28 (7) 2915-2919
  • 87 Farrell DH, Thiagarajan P, Chung DW, Davie EW. Role of fibrinogen alpha and gamma chain sites in platelet aggregation. Proc Natl Acad Sci U S A 1992; 89 (22) 10729-10732
  • 88 Hettasch JM, Bolyard MG, Lord ST. The residues AGDV of recombinant gamma chains of human fibrinogen must be carboxy-terminal to support human platelet aggregation. Thromb Haemost 1992; 68 (6) 701-706
  • 89 Liu CZ, Shih MH, Tsai PJ. ClfA(221-550), a fibrinogen-binding segment of Staphylococcus aureus clumping factor A, disrupts fibrinogen function. Thromb Haemost 2005; 94 (2) 286-294
  • 90 Liu CZ, Huang TF, Tsai PJ, Tsai PJ, Chang LY, Chang MC. A segment of Staphylococcus aureus clumping factor A with fibrinogen-binding activity (ClfA221-550) inhibits platelet-plug formation in mice. Thromb Res 2007; 121 (2) 183-191
  • 91 Ganesh VK, Rivera JJ, Smeds E , et al. A structural model of the Staphylococcus aureus ClfA-fibrinogen interaction opens new avenues for the design of anti-staphylococcal therapeutics. PLoS Pathog 2008; 4 (11) e1000226
  • 92 Xiao T, Takagi J, Coller BS, Wang JH, Springer TA. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 2004; 432 (7013) 59-67
  • 93 Hair PS, Echague CG, Sholl AM , et al. Clumping factor A interaction with complement factor I increases C3b cleavage on the bacterial surface of Staphylococcus aureus and decreases complement-mediated phagocytosis. Infect Immun 2010; 78 (4) 1717-1727
  • 94 Higgins J, Loughman A, van Kessel KP, van Strijp JA, Foster TJ. Clumping factor A of Staphylococcus aureus inhibits phagocytosis by human polymorphonuclear leucocytes. FEMS Microbiol Lett 2006; 258 (2) 290-296
  • 95 Moreillon P, Entenza JM, Francioli P , et al. Role of Staphylococcus aureus coagulase and clumping factor in pathogenesis of experimental endocarditis. Infect Immun 1995; 63 (12) 4738-4743
  • 96 Josefsson E, Hartford O, O'Brien L, Patti JM, Foster T. Protection against experimental Staphylococcus aureus arthritis by vaccination with clumping factor A, a novel virulence determinant. J Infect Dis 2001; 184 (12) 1572-1580
  • 97 Que YA, Haefliger JA, Piroth L , et al. Fibrinogen and fibronectin binding cooperate for valve infection and invasion in Staphylococcus aureus experimental endocarditis. J Exp Med 2005; 201 (10) 1627-1635
  • 98 McAdow M, Kim HK, Dedent AC, Hendrickx AP, Schneewind O, Missiakas DM. Preventing Staphylococcus aureus sepsis through the inhibition of its agglutination in blood. PLoS Pathog 2011; 7 (10) e1002307
  • 99 Ní Eidhin D, Perkins S, Francois P, Vaudaux P, Höök M, Foster TJ. Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus. Mol Microbiol 1998; 30 (2) 245-257
  • 100 Walsh EJ, O'Brien LM, Liang X, Hook M, Foster TJ. Clumping factor B, a fibrinogen-binding MSCRAMM (microbial surface components recognizing adhesive matrix molecules) adhesin of Staphylococcus aureus, also binds to the tail region of type I cytokeratin 10. J Biol Chem 2004; 279 (49) 50691-50699
  • 101 Mulcahy ME, Geoghegan JA, Monk IR , et al. Nasal colonisation by Staphylococcus aureus depends upon clumping factor B binding to the squamous epithelial cell envelope protein loricrin. PLoS Pathog 2012; 8 (12) e1003092
  • 102 Xiang H, Feng Y, Wang J , et al. Crystal structures reveal the multi-ligand binding mechanism of Staphylococcus aureus ClfB. PLoS Pathog 2012; 8 (6) e1002751
  • 103 Ganesh VK, Barbu EM, Deivanayagam CC , et al. Structural and biochemical characterization of Staphylococcus aureus clumping factor B/ligand interactions. J Biol Chem 2011; 286 (29) 25963-25972
  • 104 Miajlovic H, Loughman A, Brennan M, Cox D, Foster TJ. Both complement- and fibrinogen-dependent mechanisms contribute to platelet aggregation mediated by Staphylococcus aureus clumping factor B. Infect Immun 2007; 75 (7) 3335-3343
  • 105 Wertheim HF, Walsh E, Choudhurry R , et al. Key role for clumping factor B in Staphylococcus aureus nasal colonization of humans. PLoS Med 2008; 5 (1) e17
  • 106 Schwarz-Linek U, Höök M, Potts JR. The molecular basis of fibronectin-mediated bacterial adherence to host cells. Mol Microbiol 2004; 52 (3) 631-641
  • 107 Stemberk V, Jones RP, Moroz O , et al. Evidence for steric regulation of fibrinogen binding to Staphylococcus aureus fibronectin-binding protein A (FnBPA). J Biol Chem 2014; 289 (18) 12842-12851
  • 108 Peacock SJ, Foster TJ, Cameron BJ, Berendt AR. Bacterial fibronectin-binding proteins and endothelial cell surface fibronectin mediate adherence of Staphylococcus aureus to resting human endothelial cells. Microbiology 1999; 145 (Pt 12): 3477-3486
  • 109 McCourt J, O'Halloran DP, McCarthy H, O'Gara JP, Geoghegan JA. Fibronectin-binding proteins are required for biofilm formation by community-associated methicillin-resistant Staphylococcus aureus strain LAC. FEMS Microbiol Lett 2014; 353 (2) 157-164
  • 110 O'Neill E, Humphreys H, O'Gara JP. Carriage of both the fnbA and fnbB genes and growth at 37 degrees C promote FnBP-mediated biofilm development in meticillin-resistant Staphylococcus aureus clinical isolates. J Med Microbiol 2009; 58 (Pt 4): 399-402
  • 111 Herman-Bausier P, El-Kirat-Chatel S, Foster TJ, Geoghegan JA, Dufrêne YF. Staphylococcus aureus Fibronectin-Binding Protein A Mediates Cell-Cell Adhesion through Low-Affinity Homophilic Bonds. MBio 2015; 6 (3) e00413-e00415
  • 112 Tung Hs, Guss B, Hellman U, Persson L, Rubin K, Rydén C. A bone sialoprotein-binding protein from Staphylococcus aureus: a member of the staphylococcal Sdr family. Biochem J 2000; 345 (Pt 3): 611-619
  • 113 Yacoub A, Lindahl P, Rubin K, Wendel M, Heinegård D, Rydén C. Purification of a bone sialoprotein-binding protein from Staphylococcus aureus. Eur J Biochem 1994; 222 (3) 919-925
  • 114 Vazquez V, Liang X, Horndahl JK , et al. Fibrinogen is a ligand for the Staphylococcus aureus microbial surface components recognizing adhesive matrix molecules (MSCRAMM) bone sialoprotein-binding protein (Bbp). J Biol Chem 2011; 286 (34) 29797-29805
  • 115 Sharp JA, Echague CG, Hair PS , et al. Staphylococcus aureus surface protein SdrE binds complement regulator factor H as an immune evasion tactic. PLoS ONE 2012; 7 (5) e38407
  • 116 Hair PS, Foley CK, Krishna NK , et al. Complement regulator C4BP binds to Staphylococcus aureus surface proteins SdrE and Bbp inhibiting bacterial opsonization and killing. Res Immunol 2013; 3: 114-121
  • 117 Lee LY, Liang X, Höök M, Brown EL. Identification and characterization of the C3 binding domain of the Staphylococcus aureus extracellular fibrinogen-binding protein (Efb). J Biol Chem 2004; 279 (49) 50710-50716
  • 118 Jongerius I, von Köckritz-Blickwede M, Horsburgh MJ, Ruyken M, Nizet V, Rooijakkers SH. Staphylococcus aureus virulence is enhanced by secreted factors that block innate immune defenses. J Innate Immun 2012; 4 (3) 301-311
  • 119 Cheng AG, Kim HK, Burts ML, Krausz T, Schneewind O, Missiakas DM. Genetic requirements for Staphylococcus aureus abscess formation and persistence in host tissues. FASEB J 2009; 23 (10) 3393-3404
  • 120 Ko YP, Liang X, Smith CW, Degen JL, Höök M. Binding of Efb from Staphylococcus aureus to fibrinogen blocks neutrophil adherence. J Biol Chem 2011; 286 (11) 9865-9874
  • 121 Ko Y-P, Kang M, Ganesh VK, Ravirajan D, Li B, Höök M. Coagulase and Efb of Staphylococcus aureus have a common fibrinogen binding motif. MBio 2016; 7 (1) e01885-e15
  • 122 Ko YP, Kuipers A, Freitag CM , et al. Phagocytosis escape by a Staphylococcus aureus protein that connects complement and coagulation proteins at the bacterial surface. PLoS Pathog 2013; 9 (12) e1003816
  • 123 Jongerius I, Köhl J, Pandey MK , et al. Staphylococcal complement evasion by various convertase-blocking molecules. J Exp Med 2007; 204 (10) 2461-2471
  • 124 Lee LY, Höök M, Haviland D , et al. Inhibition of complement activation by a secreted Staphylococcus aureus protein. J Infect Dis 2004; 190 (3) 571-579
  • 125 Shannon O, Flock JI. Extracellular fibrinogen binding protein, Efb, from Staphylococcus aureus binds to platelets and inhibits platelet aggregation. Thromb Haemost 2004; 91 (4) 779-789
  • 126 Shannon O, Uekötter A, Flock JI. Extracellular fibrinogen binding protein, Efb, from Staphylococcus aureus as an antiplatelet agent in vivo. Thromb Haemost 2005; 93 (5) 927-931
  • 127 Palma M, Nozohoor S, Schennings T, Heimdahl A, Flock JI. Lack of the extracellular 19-kilodalton fibrinogen-binding protein from Staphylococcus aureus decreases virulence in experimental wound infection. Infect Immun 1996; 64 (12) 5284-5289
  • 128 Fitzgerald JR, Foster TJ, Cox D. The interaction of bacterial pathogens with platelets. Nat Rev Microbiol 2006; 4 (6) 445-457
  • 129 Hussain M, Becker K, von Eiff C, Schrenzel J, Peters G, Herrmann M. Identification and characterization of a novel 38.5-kilodalton cell surface protein of Staphylococcus aureus with extended-spectrum binding activity for extracellular matrix and plasma proteins. J Bacteriol 2001; 183 (23) 6778-6786
  • 130 Jönsson K, McDevitt D, McGavin MH, Patti JM, Höök M. Staphylococcus aureus expresses a major histocompatibility complex class II analog. J Biol Chem 1995; 270 (37) 21457-21460
  • 131 Hammel M, Nemecek D, Keightley JA, Thomas Jr GJ, Geisbrecht BV. The Staphylococcus aureus extracellular adherence protein (Eap) adopts an elongated but structured conformation in solution. Protein Sci 2007; 16 (12) 2605-2617
  • 132 Palma M, Haggar A, Flock JI. Adherence of Staphylococcus aureus is enhanced by an endogenous secreted protein with broad binding activity. J Bacteriol 1999; 181 (9) 2840-2845
  • 133 Hussain M, Haggar A, Heilmann C, Peters G, Flock JI, Herrmann M. Insertional inactivation of Eap in Staphylococcus aureus strain Newman confers reduced staphylococcal binding to fibroblasts. Infect Immun 2002; 70 (6) 2933-2940
  • 134 Haggar A, Flock JI, Norrby-Teglund A. Extracellular adherence protein (Eap) from Staphylococcus aureus does not function as a superantigen. Clin Microbiol Infect 2010; 16 (8) 1155-1158
  • 135 Chavakis T, Hussain M, Kanse SM , et al. Staphylococcus aureus extracellular adherence protein serves as anti-inflammatory factor by inhibiting the recruitment of host leukocytes. Nat Med 2002; 8 (7) 687-693
  • 136 Lee LY, Miyamoto YJ, McIntyre BW , et al. The Staphylococcus aureus Map protein is an immunomodulator that interferes with T cell-mediated responses. J Clin Invest 2002; 110 (10) 1461-1471
  • 137 Xie C, Alcaide P, Geisbrecht BV , et al. Suppression of experimental autoimmune encephalomyelitis by extracellular adherence protein of Staphylococcus aureus. J Exp Med 2006; 203 (4) 985-994
  • 138 Athanasopoulos AN, Economopoulou M, Orlova VV , et al. The extracellular adherence protein (Eap) of Staphylococcus aureus inhibits wound healing by interfering with host defense and repair mechanisms. Blood 2006; 107 (7) 2720-2727
  • 139 Stapels DA, Kuipers A, von Köckritz-Blickwede M , et al. Staphylococcus aureus protects its immune-evasion proteins against degradation by neutrophil serine proteases. Cell Microbiol 2015;
  • 140 Woehl JL, Stapels DA, Garcia BL , et al. The extracellular adherence protein from Staphylococcus aureus inhibits the classical and lectin pathways of complement by blocking formation of the C3 proconvertase. J Immunol 2014; 193 (12) 6161-6171
  • 141 Friedrich R, Panizzi P, Fuentes-Prior P , et al. Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature 2003; 425 (6957) 535-539
  • 142 Kroh HK, Panizzi P, Bock PE. Von Willebrand factor-binding protein is a hysteretic conformational activator of prothrombin. Proc Natl Acad Sci U S A 2009; 106 (19) 7786-7791
  • 143 Bodén MK, Flock JI. Cloning and characterization of a gene for a 19 kDa fibrinogen-binding protein from Staphylococcus aureus. Mol Microbiol 1994; 12 (4) 599-606
  • 144 Thomer L, Schneewind O, Missiakas D. Multiple ligands of von Willebrand factor-binding protein (vWbp) promote Staphylococcus aureus clot formation in human plasma. J Biol Chem 2013; 288 (39) 28283-28292
  • 145 Collen D, Schlott B, Engelborghs Y , et al. On the mechanism of the activation of human plasminogen by recombinant staphylokinase. J Biol Chem 1993; 268 (11) 8284-8289
  • 146 Jin T, Bokarewa M, Foster T, Mitchell J, Higgins J, Tarkowski A. Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol 2004; 172 (2) 1169-1176
  • 147 Kwiecinski J, Jacobsson G, Karlsson M , et al. Staphylokinase promotes the establishment of Staphylococcus aureus skin infections while decreasing disease severity. J Infect Dis 2013; 208 (6) 990-999
  • 148 Peetermans M, Vanassche T, Liesenborghs L , et al. Plasminogen activation by staphylokinase enhances local spreading of S. aureus in skin infections. BMC Microbiol 2014; 14: 310
  • 149 Kwieciński J, Josefsson E, Mitchell J , et al. Activation of plasminogen by staphylokinase reduces the severity of Staphylococcus aureus systemic infection. J Infect Dis 2010; 202 (7) 1041-1049
  • 150 Jin T, Bokarewa M, McIntyre L , et al. Fatal outcome of bacteraemic patients caused by infection with staphylokinase-deficient Staphylococcus aureus strains. J Med Microbiol 2003; 52 (Pt 10): 919-923
  • 151 Kwiecinski J, Peetermans M, Liesenborghs L , et al. Staphylokinase control of staphylococcus aureus biofilm formation and detachment through host plasminogen activation. J Infect Dis 2016; 213 (1) 139-148
  • 152 Sumby P, Waldor MK. Transcription of the toxin genes present within the Staphylococcal phage phiSa3ms is intimately linked with the phage's life cycle. J Bacteriol 2003; 185 (23) 6841-6851
  • 153 Vanassche T, Verhaegen J, Peetermans WE , et al. Inhibition of staphylothrombin by dabigatran reduces Staphylococcus aureus virulence. J Thromb Haemost 2011; 9 (12) 2436-2446
  • 154 Sawai T, Tomono K, Yanagihara K , et al. Role of coagulase in a murine model of hematogenous pulmonary infection induced by intravenous injection of Staphylococcus aureus enmeshed in agar beads. Infect Immun 1997; 65 (2) 466-471
  • 155 Cawdery M, Foster WD, Hawgood BC, Taylor C. The role of coagulase in the defence of Staphylococcus aureus against phagocytosis. Br J Exp Pathol 1969; 50 (4) 408-412
  • 156 Vanassche T, Peetermans M, Van Aelst LN , et al. The role of staphylothrombin-mediated fibrin deposition in catheter-related Staphylococcus aureus infections. J Infect Dis 2013; 208 (1) 92-100
  • 157 Flick MJ, Du X, Prasad JM , et al. Genetic elimination of the binding motif on fibrinogen for the S. aureus virulence factor ClfA improves host survival in septicemia. Blood 2013; 121 (10) 1783-1794
  • 158 Josefsson E, Higgins J, Foster TJ, Tarkowski A. Fibrinogen binding sites P336 and Y338 of clumping factor A are crucial for Staphylococcus aureus virulence. PLoS ONE 2008; 3 (5) e2206
  • 159 Scully IL, Timofeyeva Y, Keeney D , et al. Demonstration of the preclinical correlate of protection for Staphylococcus aureus clumping factor A in a murine model of infection. Vaccine 2015; 33 (41) 5452-5457
  • 160 Ugarova TP, Solovjov DA, Zhang L , et al. Identification of a novel recognition sequence for integrin alphaM beta2 within the gamma-chain of fibrinogen. J Biol Chem 1998; 273 (35) 22519-22527
  • 161 Lishko VK, Kudryk B, Yakubenko VP, Yee VC, Ugarova TP. Regulated unmasking of the cryptic binding site for integrin alpha M beta 2 in the gamma C-domain of fibrinogen. Biochemistry 2002; 41 (43) 12942-12951
  • 162 Aleman MM, Walton BL, Byrnes JR, Wolberg AS. Fibrinogen and red blood cells in venous thrombosis. Thromb Res 2014; 133 (Suppl. 01) S38-S40
  • 163 Loof TG, Mörgelin M, Johansson L , et al. Coagulation, an ancestral serine protease cascade, exerts a novel function in early immune defense. Blood 2011; 118 (9) 2589-2598
  • 164 Tang YQ, Yeaman MR, Selsted ME. Antimicrobial peptides from human platelets. Infect Immun 2002; 70 (12) 6524-6533
  • 165 Yeaman MR, Norman DC, Bayer AS. Staphylococcus aureus susceptibility to thrombin-induced platelet microbicidal protein is independent of platelet adherence and aggregation in vitro. Infect Immun 1992; 60 (6) 2368-2374
  • 166 Zhang X, Liu Y, Gao Y , et al. Inhibiting platelets aggregation could aggravate the acute infection caused by Staphylococcus aureus. Platelets 2011; 22 (3) 228-236
  • 167 Yeaman MR. The role of platelets in antimicrobial host defense. Clin Infect Dis 1997; 25 (5) 951-968 , quiz 969–970
  • 168 Yeaman MR. Bacterial-platelet interactions: virulence meets host defense. Future Microbiol 2010; 5 (3) 471-506
  • 169 Yeaman MR. Platelets in defense against bacterial pathogens. Cell Mol Life Sci 2010; 67 (4) 525-544
  • 170 Chapman GH, Berens C, Peters A, Curcio L. Coagulase and Hemolysin Tests as Measures of the Pathogenicity of Staphylococci. J Bacteriol 1934; 28 (4) 343-363
  • 171 Peacock SJ, Moore CE, Justice A , et al. Virulent combinations of adhesin and toxin genes in natural populations of Staphylococcus aureus. Infect Immun 2002; 70 (9) 4987-4996
  • 172 Veloso TR, Mancini S, Giddey M , et al. Vaccination against Staphylococcus aureus experimental endocarditis using recombinant Lactococcus lactis expressing ClfA or FnbpA. Vaccine 2015; 33 (30) 3512-3517
  • 173 Fowler Jr VG, Proctor RA. Where does a Staphylococcus aureus vaccine stand?. Clin Microbiol Infect 2014; 20 (Suppl. 05) 66-75
  • 174 Colvin RB, Mosesson MW, Dvorak HF. Delayed-type hypersensitivity skin reactions in congenital afibrinogenemia lack fibrin deposition and induration. J Clin Invest 1979; 63 (6) 1302-1306
  • 175 Huang SC, Yang YJ. Septic shock and hypofibrinogenemia predict a fatal outcome in childhood acute acalculous cholecystitis. J Pediatr Gastroenterol Nutr 2011; 53 (5) 548-552
  • 176 Edner J, Rudd E, Zheng C , et al. Severe bacteria-associated hemophagocytic lymphohistiocytosis in an extremely premature infant. Acta Paediatr 2007; 96 (11) 1703-1706
  • 177 Datta Kanjilal S, Bagchi S. Acute osteomyelitis in congenital hypofibrinogenemia. Indian J Pediatr 2006; 73 (6) 529-530