Neuropediatrics 2016; 47(06): 349-354
DOI: 10.1055/s-0036-1588020
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Update on Leukodystrophies: A Historical Perspective and Adapted Definition

Sietske H. Kevelam
1   Department of Child Neurology, VU University Medical Centre, Amsterdam, The Netherlands
2   Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
,
Marjan E. Steenweg
1   Department of Child Neurology, VU University Medical Centre, Amsterdam, The Netherlands
2   Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
,
Siddharth Srivastava
3   Department of Neurogenetics, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
,
Guy Helman
4   Department of Neurology, Children's National Health System, Washington, District of Columbia, United States
,
Sakkubai Naidu
3   Department of Neurogenetics, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
,
Raphael Schiffmann
5   Institute of Metabolic Disease, Baylor Research Institute, Dallas, Texas, United States
,
Susan Blaser
6   Division of Neuroradiology, The Hospital for Sick Children, Toronto, Ontario, Canada
,
Adeline Vanderver
4   Department of Neurology, Children's National Health System, Washington, District of Columbia, United States
,
Nicole I. Wolf
1   Department of Child Neurology, VU University Medical Centre, Amsterdam, The Netherlands
2   Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
,
Marjo S. van der Knaap
1   Department of Child Neurology, VU University Medical Centre, Amsterdam, The Netherlands
2   Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
7   Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
› Author Affiliations
Further Information

Publication History

09 July 2016

13 July 2016

Publication Date:
26 August 2016 (online)

Abstract

Leukodystrophies were defined in the 1980s as progressive genetic disorders primarily affecting myelin of the central nervous system. At that time, a limited number of such disorders and no associated gene defects were known. The majority of the leukodystrophy patients remained without a specific diagnosis. In the following two decades, magnetic resonance imaging pattern recognition revolutionized the field, allowing the definition of numerous novel leukodystrophies. Their genetic defects were usually identified through genetic linkage studies. This process required substantial numbers of cases and many rare disorders remained unclarified. As recently as 2010, 50% of the leukodystrophy patients remained unclassified. Since 2011, whole-exome sequencing has resulted in an exponential increase in numbers of known, distinct, genetically determined, ultrarare leukodystrophies. We performed a retrospective study concerning three historical cohorts of unclassified leukodystrophy patients and found that currently at least 80% of the patients can be molecularly classified. Based on the original definition of the leukodystrophies, numerous defects in proteins important in myelin structure, maintenance, and function were expected. By contrast, a high percentage of the newly identified gene defects affect the housekeeping process of mRNA translation, shedding new light on white matter pathobiology and requiring adaptation of the leukodystrophy definition.

Funding

The study received financial support from ZonMw TOP grant 91211005. G. H. and A. V. are supported by the Myelin Disorders Bioregistry Project.


* These authors contributed equally to the study.


 
  • References

  • 1 Carswell R. Pathological Anatomy. Illustrations of the Elementary Forms of Disease. London, United Kingdom: Longman, Orme, Brown, Green and Longman; 1838
  • 2 Cruveilhier J. Anatomie pathologique du corps humain. Vol II. Fasc XXXII. Paris, France: Bailliere; 1835. –1842
  • 3 Heubner O. Über diffuse Hirnsclerose. Charité Ann 1897; 22: 298-310
  • 4 Bielschowsky M, Henneberg R. Über familiäre diffuse sklerose (Leukodystrophia cerebri progressiva hereditaria). J Psychol Neurol 1928; 36: 131-181
  • 5 Morell P. A correlative synopsis of the leukodystrophies. Neuropediatrics 1984; 15 (Suppl): 62-65
  • 6 Seitelberger F. Structural manifestations of leukodystrophies. Neuropediatrics 1984; 15 (Suppl): 53-61
  • 7 Barnes DM, Enzmann DR. The evolution of white matter disease as seen on computed tomography. Radiology 1981; 138 (2) 379-383
  • 8 Young IR, Hall AS, Pallis CA, Legg NJ, Bydder GM, Steiner RE. Nuclear magnetic resonance imaging of the brain in multiple sclerosis. Lancet 1981; 2 (8255) 1063-1066
  • 9 Dietrich RB, Vining EP, Taira RK, Hall TR, Phillipart M. Myelin disorders of childhood: correlation of MR findings and severity of neurological impairment. J Comput Assist Tomogr 1990; 14 (5) 693-698
  • 10 Demaerel P, Faubert C, Wilms G, Casaer P, Piepgras U, Baert AL. MR findings in leukodystrophy. Neuroradiology 1991; 33 (4) 368-371
  • 11 Valle D, Beaudet AL, Vogelstein B , et al. The Online Metabolic and Molecular Bases of Inherited Disease. New York, NY: The McGraw-Hill Companies; 2016. Available at: http://ommbid.mhmedical.com/book.aspx?bookid=971 . Accessed August 17, 2016
  • 12 Alexander WS. Progressive fibrinoid degeneration of fibrillary astrocytes associated with mental retardation in a hydrocephalic infant. Brain 1949; 72 (3) 373-381 , 3
  • 13 van der Knaap MS, Naidu S, Kleinschmidt-Demasters BK, Kamphorst W, Weinstein HC. Autosomal dominant diffuse leukoencephalopathy with neuroaxonal spheroids. Neurology 2000; 54 (2) 463-468
  • 14 Valk J, van der Knaap MS. Magnetic Resonance of Myelin, Myelination and Myelin Disorders. Berlin, Germany: Springer; 1989
  • 15 van der Knaap MS, Valk J, de Neeling N, Nauta JJ. Pattern recognition in magnetic resonance imaging of white matter disorders in children and young adults. Neuroradiology 1991; 33 (6) 478-493
  • 16 van der Knaap MS, Valk J. Magnetic Resonance of Myelin, Myelination and Myelin Disorders. Berlin, Germany: Springer; 1995
  • 17 van der Knaap MS, Breiter SN, Naidu S, Hart AA, Valk J. Defining and categorizing leukoencephalopathies of unknown origin: MR imaging approach. Radiology 1999; 213 (1) 121-133
  • 18 van der Knaap MS, Barth PG, Stroink H , et al. Leukoencephalopathy with swelling and a discrepantly mild clinical course in eight children. Ann Neurol 1995; 37 (3) 324-334
  • 19 Hanefeld F, Holzbach U, Kruse B, Wilichowski E, Christen HJ, Frahm J. Diffuse white matter disease in three children: an encephalopathy with unique features on magnetic resonance imaging and proton magnetic resonance spectroscopy. Neuropediatrics 1993; 24 (5) 244-248
  • 20 Schiffmann R, Moller JR, Trapp BD , et al. Childhood ataxia with diffuse central nervous system hypomyelination. Ann Neurol 1994; 35 (3) 331-340
  • 21 van der Knaap MS, Barth PG, Gabreëls FJ , et al. A new leukoencephalopathy with vanishing white matter. Neurology 1997; 48 (4) 845-855
  • 22 van der Knaap MS, Naidu S, Pouwels PJ , et al. New syndrome characterized by hypomyelination with atrophy of the basal ganglia and cerebellum. AJNR Am J Neuroradiol 2002; b; 23 (9) 1466-1474
  • 23 van der Knaap MS, van der Voorn P, Barkhof F , et al. A new leukoencephalopathy with brainstem and spinal cord involvement and high lactate. Ann Neurol 2003; 53 (2) 252-258
  • 24 Wolf NI, Harting I, Boltshauser E , et al. Leukoencephalopathy with ataxia, hypodontia, and hypomyelination. Neurology 2005; 64 (8) 1461-1464
  • 25 Timmons M, Tsokos M, Asab MA , et al. Peripheral and central hypomyelination with hypogonadotropic hypogonadism and hypodontia. Neurology 2006; 67 (11) 2066-2069
  • 26 Bernard G, Thiffault I, Tetreault M , et al. Tremor-ataxia with central hypomyelination (TACH) leukodystrophy maps to chromosome 10q22.3-10q23.31. Neurogenetics 2010; 11 (4) 457-464
  • 27 Steenweg ME, Vanderver A, Ceulemans B , et al. Novel infantile-onset leukoencephalopathy with high lactate level and slow improvement. Arch Neurol 2012; b; 69 (6) 718-722
  • 28 Steenweg ME, Wolf NI, Schieving JH , et al. Novel hypomyelinating leukoencephalopathy affecting early myelinating structures. Arch Neurol 2012; 69 (1) 125-128
  • 29 Hudson LD, Puckett C, Berndt J, Chan J, Gencic S. Mutation of the proteolipid protein gene PLP in a human X chromosome-linked myelin disorder. Proc Natl Acad Sci U S A 1989; 86 (20) 8128-8131
  • 30 Polten A, Fluharty AL, Fluharty CB, Kappler J, von Figura K, Gieselmann V. Molecular basis of different forms of metachromatic leukodystrophy. N Engl J Med 1991; 324 (1) 18-22
  • 31 Kaul R, Gao GP, Balamurugan K, Matalon R. Cloning of the human aspartoacylase cDNA and a common missense mutation in Canavan disease. Nat Genet 1993; 5 (2) 118-123
  • 32 Sakai N, Inui K, Fujii N , et al. Krabbe disease: isolation and characterization of a full-length cDNA for human galactocerebrosidase. Biochem Biophys Res Commun 1994; 198 (2) 485-491
  • 33 Mosser J, Douar AM, Sarde CO , et al. Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature 1993; 361 (6414) 726-730
  • 34 Leegwater PA, Vermeulen G, Könst AA , et al. Subunits of the translation initiation factor eIF2B are mutant in leukoencephalopathy with vanishing white matter. Nat Genet 2001; 29 (4) 383-388
  • 35 van der Knaap MS, Leegwater PA, Könst AA , et al. Mutations in each of the five subunits of translation initiation factor eIF2B can cause leukoencephalopathy with vanishing white matter. Ann Neurol 2002; 51 (2) 264-270
  • 36 Leegwater PA, Yuan BQ, van der Steen J , et al. Mutations of MLC1 (KIAA0027), encoding a putative membrane protein, cause megalencephalic leukoencephalopathy with subcortical cysts. Am J Hum Genet 2001; 68 (4) 831-838
  • 37 Zara F, Biancheri R, Bruno C , et al. Deficiency of hyccin, a newly identified membrane protein, causes hypomyelination and congenital cataract. Nat Genet 2006; 38 (10) 1111-1113
  • 38 Scheper GC, van der Klok T, van Andel RJ , et al. Mitochondrial aspartyl-tRNA synthetase deficiency causes leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. Nat Genet 2007; 39 (4) 534-539
  • 39 Bernard G, Chouery E, Putorti ML , et al. Mutations of POLR3A encoding a catalytic subunit of RNA polymerase Pol III cause a recessive hypomyelinating leukodystrophy. Am J Hum Genet 2011; 89 (3) 415-423
  • 40 López-Hernández T, Ridder MC, Montolio M , et al. Mutant GlialCAM causes megalencephalic leukoencephalopathy with subcortical cysts, benign familial macrocephaly, and macrocephaly with retardation and autism. Am J Hum Genet 2011; 88 (4) 422-432
  • 41 Tétreault M, Choquet K, Orcesi S , et al. Recessive mutations in POLR3B, encoding the second largest subunit of Pol III, cause a rare hypomyelinating leukodystrophy. Am J Hum Genet 2011; 89 (5) 652-655
  • 42 Bonkowsky JL, Nelson C, Kingston JL, Filloux FM, Mundorff MB, Srivastava R. The burden of inherited leukodystrophies in children. Neurology 2010; 75 (8) 718-725
  • 43 Ng SB, Turner EH, Robertson PD , et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 2009; 461 (7261) 272-276
  • 44 Rademakers R, Baker M, Nicholson AM , et al. Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat Genet 2012; 44 (2) 200-205
  • 45 Steenweg ME, Ghezzi D, Haack T , et al. Leukoencephalopathy with thalamus and brainstem involvement and high lactate ‘LTBL’ caused by EARS2 mutations. Brain 2012; 135 (Pt 5): 1387-1394
  • 46 Simons C, Wolf NI, McNeil N , et al. A de novo mutation in the β-tubulin gene TUBB4A results in the leukoencephalopathy hypomyelination with atrophy of the basal ganglia and cerebellum. Am J Hum Genet 2013; 92 (5) 767-773
  • 47 Boycott KM, Dyment DA, Sawyer SL, Vanstone MR, Beaulieu CL. Identification of genes for childhood heritable diseases. Annu Rev Med 2014; 65: 19-31
  • 48 Vissers LE, Gilissen C, Veltman JA. Genetic studies in intellectual disability and related disorders. Nat Rev Genet 2016; 17 (1) 9-18
  • 49 Kevelam SH, Rodenburg RJ, Wolf NI , et al. NUBPL mutations in patients with complex I deficiency and a distinct MRI pattern. Neurology 2013; 80 (17) 1577-1583
  • 50 Depienne C, Bugiani M, Dupuits C , et al. Brain white matter oedema due to ClC-2 chloride channel deficiency: an observational analytical study. Lancet Neurol 2013; 12 (7) 659-668
  • 51 Taft RJ, Vanderver A, Leventer RJ , et al. Mutations in DARS cause hypomyelination with brain stem and spinal cord involvement and leg spasticity. Am J Hum Genet 2013; 92 (5) 774-780
  • 52 Dallabona C, Diodato D, Kevelam SH , et al. Novel (ovario) leukodystrophy related to AARS2 mutations. Neurology 2014; 82 (23) 2063-2071
  • 53 Melchionda L, Haack TB, Hardy S , et al. Mutations in APOPT1, encoding a mitochondrial protein, cause cavitating leukoencephalopathy with cytochrome c oxidase deficiency. Am J Hum Genet 2014; 95 (3) 315-325
  • 54 Wolf NI, Salomons GS, Rodenburg RJ , et al. Mutations in RARS cause hypomyelination. Ann Neurol 2014; a; 76 (1) 134-139
  • 55 Kevelam SH, Taube JR, van Spaendonk RM , et al. Altered PLP1 splicing causes hypomyelination of early myelinating structures. Ann Clin Transl Neurol 2015; 2 (6) 648-661
  • 56 Dallabona C, Abbink TE, Carrozzo R , et al. LYRM7 mutations cause a multifocal cavitating leukoencephalopathy with distinct MRI appearance. Brain 2016; 139 (Pt 3): 782-794
  • 57 Vanderver A, Simons C, Helman G , et al; Leukodystrophy Study Group. Whole exome sequencing in patients with white matter abnormalities. Ann Neurol 2016; 79 (6) 1031-1037
  • 58 de Ligt J, Willemsen MH, van Bon BW , et al. Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med 2012; 367 (20) 1921-1929
  • 59 Srivastava S, Cohen JS, Vernon H , et al. Clinical whole exome sequencing in child neurology practice. Ann Neurol 2014; 76 (4) 473-483
  • 60 Taylor RW, Pyle A, Griffin H , et al. Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. JAMA 2014; 312 (1) 68-77
  • 61 Schiffmann R, van der Knaap MS. Invited article: an MRI-based approach to the diagnosis of white matter disorders. Neurology 2009; 72 (8) 750-759
  • 62 van der Knaap MS, Valk J. Magnetic Resonance of Myelination and Myelin Disorders. Heidelberg, Germany: Springer; 2005
  • 63 Naidu S, Bibat G, Lin D , et al. Progressive cavitating leukoencephalopathy: a novel childhood disease. Ann Neurol 2005; 58 (6) 929-938
  • 64 Uhlenberg B, Schuelke M, Rüschendorf F , et al. Mutations in the gene encoding gap junction protein alpha 12 (connexin 46.6) cause Pelizaeus-Merzbacher-like disease. Am J Hum Genet 2004; 75 (2) 251-260
  • 65 Scheper GC, van der Knaap MS, Proud CG. Translation matters: protein synthesis defects in inherited disease. Nat Rev Genet 2007; b; 8 (9) 711-723
  • 66 Scheper GC, Proud CG, van der Knaap MS. Defective translation initiation causes vanishing of cerebral white matter. Trends Mol Med 2006; 12 (4) 159-166
  • 67 Antonellis A, Green ED. The role of aminoacyl-tRNA synthetases in genetic diseases. Annu Rev Genomics Hum Genet 2008; 9: 87-107
  • 68 Wolf NI, Vanderver A, van Spaendonk RM , et al; 4H Research Group. Clinical spectrum of 4H leukodystrophy caused by POLR3A and POLR3B mutations. Neurology 2014; b; 83 (21) 1898-1905
  • 69 van der Knaap MS, Pronk JC, Scheper GC. Vanishing white matter disease. Lancet Neurol 2006; 5 (5) 413-423
  • 70 Kim S, You S, Hwang D. Aminoacyl-tRNA synthetases and tumorigenesis: more than housekeeping. Nat Rev Cancer 2011; 11 (10) 708-718
  • 71 Yao P, Poruri K, Martinis SA, Fox PL. Non-catalytic regulation of gene expression by aminoacyl-tRNA synthetases. Top Curr Chem 2014; 344: 167-187
  • 72 Ginhoux F, Greter M, Leboeuf M , et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010; 330 (6005) 841-845
  • 73 Hamilton EM, Polder E, Vanderver A , et al; H-ABC Research Group. Hypomyelination with atrophy of the basal ganglia and cerebellum: further delineation of the phenotype and genotype-phenotype correlation. Brain 2014; 137 (Pt 7): 1921-1930
  • 74 Vanderver A, Prust M, Tonduti D , et al; GLIA Consortium. Case definition and classification of leukodystrophies and leukoencephalopathies. Mol Genet Metab 2015; 114 (4) 494-500
  • 75 van der Knaap MS, Lai V, Köhler W , et al. Megalencephalic leukoencephalopathy with cysts without MLC1 defect. Ann Neurol 2010; 67 (6) 834-837
  • 76 Kevelam SH, Klouwer FC, Fock JM, Salomons GS, Bugiani M, van der Knaap MS. Absent thalami caused by a homozygous EARS2 mutation: expanding disease spectrum of LTBL. Neuropediatrics 2016; 47 (1) 64-67