Synlett 2016; 27(20): 2774-2782
DOI: 10.1055/s-0036-1588085
account
© Georg Thieme Verlag Stuttgart · New York

Research on the Conversion of α-Hydroxy Ketones into 1,2-Diketones and Subsequent Transformations

Hanbing Liang
a   School of Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. of China
,
Hui Liu*
a   School of Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. of China
,
Xuefeng Jiang*
b   Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, Shanghai 200062, P. R. of China   Email: xfjiang@chem.ecnu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 07 August 2016

Accepted after revision: 05 October 2016

Publication Date:
27 October 2016 (online)


Abstract

1,2-Diketone derivatives are valuable molecules which are widely applied in organic synthesis. In this account, we discuss our recent research progress on the construction of 1,2-diketone derivatives and their subsequent transformations, including the synthesis of ynediones, the dicarbonylation of indoles and the preparation of heterocyclic hemiketals from ynediones. In addition, mechanistic investigations on the dicarbonylation of α-hydroxy ketones are described and plausible mechanisms are proposed. Furthermore, the synthesis of 3(2H)-furanones and 3(2H)-thienones from ynediones are also described.

1 Introduction

2 A Copper-Catalyzed One-Pot Approach Toward Ynediones

3 Copper-Catalyzed Aerobic Oxidative Dicarbonylation of Indoles

4 Synthesis of Heterocyclic Hemiketals from Ynediones

5 Conclusion

 
  • References

    • 1a Deng X, Mani NS. Org. Lett. 2005; 8: 269
    • 1b Wolkenberg SE, Wisnoski DD, Leister WH, Wang Y, Zhao Z, Lindsley CW. Org. Lett. 2004; 6: 1453
    • 1c McKenna JM, Halley F, Souness JE, McLay IM, Pickett SD, Collis AJ, Page K, Ahmed I. J. Med. Chem. 2002; 45: 2173
    • 1d Herrera AJ, Rondón M, Suárez E. J. Org. Chem. 2008; 73: 3384
    • 1e Hudlický M. Oxidations in Organic Chemistry . ACS Monograph 186; Washington: 1990: 199
    • 1f Angelastro MR, Mehdi S, Burkhart JP, Peet NP, Bey P. J. Med. Chem. 1990; 33: 11
    • 1g Murakami M, Masuda H, Kawano T, Nakamura H, Ito Y. J. Org. Chem. 1991; 56: 1
    • 1h Seyferth D, Weinstein RM, Hui RC, Wei-Liang W, Archer CM. J. Org. Chem. 1991; 56: 5768
    • 2a Jong CL, Hong JP, Jin YP. Tetrahedron Lett. 2002; 43: 5661
    • 2b Ren W, Liu JF, Chen L, Wan X. Adv. Synth. Catal. 2010; 352: 1424
    • 2c Xu Y, Wan X. Tetrahedron Lett. 2013; 54: 642
    • 2d Daw P, Ramu P, Abir S, Laha S, Ramesh R, Jitendra KB. J. Am. Chem. Soc. 2014; 136: 13987
    • 3a Chen S, Liu Z, Shi E, Chen L, Wei W, Li H, Cheng Y, Wan X. Org. Lett. 2011; 13: 2274
    • 3b Wang A, Jiang H, Li X. J. Org. Chem. 2011; 76: 6958
    • 3c Andia AA, Miner MR, Woerpel KA. Org. Lett. 2015; 17: 2704
    • 4a Mupparapu N, Battini N, Battula S, Khan S, Vishwakarma RA, Ahmed QN. Chem. Eur. J. 2015; 21: 2954
    • 4b Tang R, Guo X, Xiang J, Li J. J. Org. Chem. 2013; 78: 11163
    • 4c Yang J, Cai Z, Wang Q, Fang D, Ji S. Tetrahedron 2015; 71: 7010
    • 4d Yan J, He G, Yan F, Zhang J, Zhang G. RSC Adv. 2016; 6: 44029
    • 6a Gao Q, Zhang J, Wu X, Liu S, Wu A. Org. Lett. 2015; 17: 134
    • 6b Zhang C, Jiao N. Org. Chem. Front. 2014; 1: 109
    • 6c Zhang C, Feng P, Jiao N. J. Am. Chem. Soc. 2013; 135: 15257
    • 6d Su Y, Sun X, Wu G, Jiao N. Angew. Chem. Int. Ed. 2013; 52: 9808 ; Angew. Chem. 2013, 125, 9990
    • 6e Wu J.-C, Song R.-J, Wang Z.-Q, Huang X.-C, Xie Y.-X, Li J.-H. Angew. Chem. Int. Ed. 2012; 51: 3453 ; Angew. Chem. 2012, 124, 3509
    • 6f Zhang C, Zong X, Zhang L, Jiao N. Org. Lett. 2012; 14: 3280
    • 6g Zhang C, Xu Z, Zhang L, Jiao N. Angew. Chem. Int. Ed. 2011; 50: 11088 ; Angew. Chem. 2011, 123, 11284
    • 6h Zhang C, Jiao N. J. Am. Chem. Soc. 2010; 132: 28
    • 6i Guo X, Li W, Li Z. Eur. J. Org. Chem. 2010; 5787
    • 7a Wang T, Jiao N. Acc. Chem. Res. 2014; 47: 1137
    • 7b Zhang C, Tang C, Jiao N. Chem. Soc. Rev. 2012; 41: 3464
    • 7c Shi Z, Zhang C, Tang C, Jiao N. Chem. Soc. Rev. 2012; 41: 3381
    • 7d Shi W, Liu C, Lei A. Chem. Soc. Rev. 2011; 40: 2761
    • 7e Piera J, Bäckvall J.-E. Angew. Chem. Int. Ed. 2008; 47: 3506 ; Angew. Chem. 2008, 120, 3558
    • 7f Stahl SS. Science 2005; 309: 1824
    • 8a Huang X, Li X, Zou M, Song S, Tang C, Yuan Y, Jiao N. J. Am. Chem. Soc. 2014; 136: 14858
    • 8b Tang C, Jiao N. Angew. Chem. Int. Ed. 2014; 53: 6528 ; Angew. Chem. 2014, 126, 6646
    • 8c Liang Y, Jiao N. Angew. Chem. Int. Ed. 2014; 53: 548 ; Angew. Chem. 2014, 126, 558
    • 8d Wang T, Jiao N. J. Am. Chem. Soc. 2013; 135: 11692
    • 8e Yan Y, Feng P, Zheng Q.-Z, Liang Y.-F, Lu J.-F, Cui Y, Jiao N. Angew. Chem. Int. Ed. 2013; 52: 5827 ; Angew. Chem. 2013, 125, 5939
    • 8f Volla CM. R, Bäckvall J.-E. Angew. Chem. Int. Ed. 2013; 52: 14209 ; Angew. Chem. 2013, 125, 14459
    • 9a Liu Y, Liu M, Guo S, Tu H, Zhou Y, Gao H. Org. Lett. 2006; 8: 3445
    • 9b Merkul E, Dohe J, Gers C, Rominger F, Müller TJ. J. Angew. Chem. Int. Ed. 2011; 50: 2966 ; Angew. Chem. 2011, 123, 3023
    • 10a Boersch C, Merkul E, Müller TJ. J. Angew. Chem. Int. Ed. 2011; 50: 10448
    • 10b Merkul E, Dohe J, Gers C, Rominger F, Müller TJ. J. Angew. Chem. Int. Ed. 2011; 50: 2966
    • 10c Gers C, Nordmann J, Kumru C, Frank W, Müller TJ. J. J. Org. Chem. 2014; 79: 3296
  • 11 Stephens RD, Castro CE. J. Org. Chem. 1963; 28: 3313
  • 12 Guo M, Li D, Zhang Z. J. Org. Chem. 2003; 68: 10172
    • 13a Glaser C. Ber. Dtsch. Chem. Ges. 1869; 2: 422
    • 13b Eglinton G, Galbraith AR. J. Chem. Soc. 1959; 889
    • 13c Hay AS. J. Org. Chem. 1962; 27: 3320
    • 13d Bohlmann F, Schönowsky H, Inhoffen E, Grau G. Chem. Ber. 1964; 97: 794
  • 14 Zhang Z, Jiang X. Org. Lett. 2014; 16: 4400
  • 15 Bäckvall J.-E, Hopkins RB, Grennberg H, Mader M, Awasthi AK. J. Am. Chem. Soc. 1990; 112: 5160
  • 16 Markó IE, Giles PR, Tsukazaki M, Brown SM, Urch CJ. Science 1996; 274: 2044
  • 17 Zhang Z, Dai Z, Jiang X. Asian J. Org. Chem. 2015; 4: 1370
  • 18 Zhang Z, Dai Z, Jiang X. Asian J. Org. Chem. 2016; 5: 52
    • 19a Smith AB. III, Levenberg PA, Jerris PJ, Scarborough RM. Jr, Wovkulich PM. J. Am. Chem. Soc. 1981; 103: 1501
    • 19b Liu Y, Liu M, Guo S, Tu H, Zhou Y, Gao H. Org. Lett. 2006; 8: 3445
    • 19c Kirsch SF, Binder JT, Liébert C, Menz H. Angew. Chem. Int. Ed. 2006; 45: 5878 ; Angew. Chem. 2006, 118, 6010
    • 19d Marson CM, Edaan E, Morrell JM, Coles SJ, Hursthouse MB, Davies DT. Chem. Commun. 2007; 2494
    • 19e Kusakabe T, Takahashi T, Shen R, Ikeda A, Dhage YD, Kanno Y, Inouye Y, Sasai H, Mochida T, Kato K. Angew. Chem. Int. Ed. 2013; 52: 7845 ; Angew. Chem. 2013, 125, 7999
    • 20a Li Y, Liang F, Bi X, Liu Q. J. Org. Chem. 2006; 71: 8006
    • 20b Oh K, Kim H, Cardelli F, Bwititi T, Martynow AM. J. Org. Chem. 2008; 73: 2432