Synthesis 2017; 49(02): 293-298
DOI: 10.1055/s-0036-1588349
paper
© Georg Thieme Verlag Stuttgart · New York

N-Heterocyclic Carbene and Chiral Brønsted Acid Cooperative Catalysis for a Highly Enantioselective [4+2] Annulation

Dian-Feng Chen
Department of Chemistry, Columbia University, New York, NY 10027, USA   Email: tr2504@columbia.edu
,
Tomislav Rovis*
Department of Chemistry, Columbia University, New York, NY 10027, USA   Email: tr2504@columbia.edu
› Author Affiliations
Further Information

Publication History

Received: 14 October 2016

Accepted: 20 October 2016

Publication Date:
18 November 2016 (online)


Dedicated to Professor Dieter Enders, a pioneer in NHC catalysis, on the occasion of his 70th birthday.

Abstract

A chiral NHC/Brønsted acid cooperative catalysis system has been developed for the asymmetric annulation of functionalized benzaldehydes and activated ketones, through dearomative generation of dienolate, to give 3-aryl-3-(perfluoroalkyl)isochroman-1-ones.

Supporting Information

 
  • References

  • 1 Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307

    • For reviews about compatible catalysts in one system, see:
    • 2a Allen AE, MacMillan DW. C. Chem. Sci. 2012; 3: 633
    • 2b Shao Z, Zhang H. Chem. Soc. Rev. 2009; 38: 2745
    • 2c Du Z, Shao Z. Chem. Soc. Rev. 2013; 42: 1337
    • 2d Chen D.-F, Han Z.-Y, Zhou X.-L, Gong L.-Z. Acc. Chem. Res. 2014; 47: 2365

      For carbene/amine catalysis, see:
    • 3a Lathrop SP, Rovis T. J. Am. Chem. Soc. 2009; 131: 13628
    • 3b Ozboya KE, Rovis T. Chem. Sci. 2011; 2: 1835
    • 3c Jacobsen CB, Jensen KL, Udmark J, Jørgensen KA. Org. Lett. 2011; 13: 4790

      For carbene/base catalysis, see:
    • 4a Filloux CM, Lathrop SP, Rovis T. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 20666
    • 4b Padmanaban M, Biju AT, Glorius F. Org. Lett. 2011; 13: 5624
    • 4c Izquierdo J, Orue A, Scheidt KA. J. Am. Chem. Soc. 2013; 135: 10634
    • 4d Kuwano S, Harada S, Kang B, Oriez R, Yamaoka Y, Takasu K, Yamada K. J. Am. Chem. Soc. 2013; 135: 11485
    • 4e Youn SW, Song HS, Park JH. Org. Lett. 2014; 16: 1028
    • 4f Reddi Y, Sunoj RB. ACS Catal. 2015; 5: 1956
  • 5 Zhao X, DiRocco DA, Rovis T. J. Am. Chem. Soc. 2011; 133: 12466
    • 6a Liu G, Wilkerson PD, Toth CA, Xu H. Org. Lett. 2012; 14: 858
    • 6b Fu Z, Sun H, Chen S, Tiwari B, Li G, Chi YR. Chem. Commun. 2013; 49: 261
    • 6c Li J.-L, Sahoo B, Daniliuc CG, Glorius F. Angew. Chem. Int. Ed. 2014; 53: 10515
    • 6d Xu J, Chen X, Wang M, Zheng P, Song B.-A, Chi YR. Angew. Chem. Int. Ed. 2015; 54: 5161
    • 6e Pareek M, Sunoj RB. ACS Catal. 2016; 6: 3118
    • 6f Wang Y, Tang M, Wang Y, Wei D. J. Org. Chem. 2016; 81: 5370
  • 7 For a combination of carbene with two distinct organocatalysts, see: Wang MH, Cohen DT, Schwamb B, Mishra RK, Scheidt KA. J. Am. Chem. Soc. 2015; 137: 5891
  • 8 For a review on carbene/Lewis acid catalysis, see: Cohen DT, Scheidt KA. Chem. Sci. 2012; 3: 53

    • For carbene/transition-metal catalysis, see:
    • 9a DiRocco DA, Rovis T. J. Am. Chem. Soc. 2012; 134: 8094
    • 9b Namitharan K, Zhu T, Chen J, Zheng P, Li X, Yang S, Song B.-A, Chi YR. Nat. Commun. 2014; 5: 3982
    • 9c Liu K, Hovey MT, Scheidt KA. Chem. Sci. 2014; 5: 4026
    • 9d Guo C, Fleige M, Janssen-Müller D, Daniliuc CG, Glorius F. J. Am. Chem. Soc. 2016; 138: 7840
    • 10a Shen L.-T, Shao P.-L, Ye S. Adv. Synth. Catal. 2011; 353: 1943
    • 10b Chen X.-Y, Xia F, Cheng J.-T, Ye S. Angew. Chem. Int. Ed. 2013; 52: 10644
    • 10c Cheng J.-T, Chen X.-Y, Gao ZH, Ye S. Eur. J. Org. Chem. 2015; 1047
    • 10d Jia W.-Q, Zhang H.-M, Zhang C.-L, Gao Z.-H, Ye S. Org. Chem. Front. 2016; 3: 77
    • 11a Mo J, Chen X, Chi YR. J. Am. Chem. Soc. 2012; 134: 8810
    • 11b Xu J, Jin Z, Chi YR. Org. Lett. 2013; 15: 5028
    • 11c Wang M, Huang Z, Xu J, Chi YR. J. Am. Chem. Soc. 2014; 136: 1214
    • 11d Li B.-S, Wang Y, Jin Z, Zheng P, Ganguly R, Chi YR. Nat. Commun. 2015; 6: 6207
    • 12a Yao C, Xiao Z, Liu R, Li T, Jiao W, Yu C. Chem. Eur. J. 2013; 19: 456
    • 12b Xiao Z, Yu C, Li T, Wang X.-S, Yao C. Org. Lett. 2014; 16: 3632
    • 12c Liu R, Yu C, Xiao Z, Li T, Wang X, Xie Y, Yao C. Org. Biomol. Chem. 2014; 12: 1885
  • 13 Chen X, Yang S, Song B.-A, Chi YR. Angew. Chem. Int. Ed. 2013; 52: 11134
  • 14 During the course of these investigations, Glorius et al. reported a similar but racemic reaction. One example involving a chiral NHC catalyst provided product in 48% ee, see: Janssen-Müller D, Singha S, Olyschläger T, Daniliuc CG, Glorius F. Org. Lett. 2016; 18: 4444

    • For reviews, see:
    • 15a Akiyama T. Chem. Rev. 2007; 107: 5744
    • 15b Akiyama T, Mori T. Chem. Rev. 2015; 115: 9277
    • 15c Terada M. Chem. Commun. 2008; 4097

    • For pioneering work, see:
    • 15d Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
    • 15e Uraguchi D, Terada M. J. Am. Chem. Soc. 2004; 126: 5356
    • 16a Momiyama N, Nishimoto H, Terada M. Org. Lett. 2011; 13: 2126
    • 16b Terada M, Li F, Toda Y. Angew. Chem. Int. Ed. 2014; 53: 235
  • 17 Zhao X, Glover GS, Oberg KM, Dalton DM, Rovis T. Synlett 2013; 24: 1229
  • 18 A concerted [4+2] cycloaddition may also be operative in this step.
  • 19 Ni Q, Xiong J, Song X, Raabe G, Enders D. Synlett 2015; 26: 1465