Synlett 2017; 28(15): 1971-1974
DOI: 10.1055/s-0036-1588433
letter
© Georg Thieme Verlag Stuttgart · New York

Total Synthesis of Cordyheptapeptide A

Alfredo R. Puentes
a   Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany   Email: wessjohann@ipb-halle.de
b   Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba   Email: dgr@fq.uh.cu
,
Ricardo A. W. Neves Filho
a   Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany   Email: wessjohann@ipb-halle.de
,
Daniel G. Rivera*
b   Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba   Email: dgr@fq.uh.cu
,
Ludger A. Wessjohann*
a   Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany   Email: wessjohann@ipb-halle.de
› Author Affiliations
Further Information

Publication History

Received: 24 March 2017

Accepted: 01 May 2017

Publication Date:
31 May 2017 (online)


Abstract

The first total synthesis of cordyheptapeptide A is described. The synthesis is accomplished by a convergent approach featuring a combination of peptide coupling and the Ugi reaction for the preparation of the main building blocks and the acyclic precursor. The assembly of an N-methylated fragment by the Ugi reaction comprised the utilization of a convertible isonitrile followed by activation of the C-terminal amide. Two different macrocyclization sites were evaluated, proving greater efficacy the macrolactamization at the site Ile-Tyr, likely due of a more suitable conformational bias of the acyclic precursor having an internal β-turn centered at the N-Me-d-Phe-Pro moiety.

Supporting Information

 
  • References

    • 1a Rukachaisirikul V. Chantaruk S. Tansakul C. Saithong S. Chaicharernwimonkoon L. Pakawatchai C. Isaka M. Intereya K. J. Nat. Prod. 2006; 69: 305
    • 1b Isaka M. Srisanoh U. Lartpornmatulee N. Boonruangprapa T. J. Nat. Prod. 2007; 70: 1601
    • 1c Chen Z. Song Y. Chen Y. Huang H. Zhang W. Ju J. Chatterjee J. Gilon C. Hoffman A. Kessler H. Brauch S. Henze M. Osswald B. Naumann K. Wessjohann LA. van Berkel SS. Westermann B. Bobach C. Schurwanz J. Franke K. Denkert A. Sung TV. Kuster R. Mutiso PC. Seliger B. Wessjohann LA. J. Nat. Prod. 2012; 75: 1215
    • 2a Pando O. Stark S. Denkert A. Porzel A. Preusentanz R. Wessjohann LA. J. Am. Chem. Soc. 2011; 133: 7692
    • 2b Tarman K. Lindequist U. Wende K. Porzel A. Arnold N. Wessjohann LA. Mar. Drugs 2011; 9: 294
    • 2c Shabaan S. Ba LA. Abbas M. Burkholz T. Denkert A. Gohr A. Wessjohann LA. Sasse F. Weber W. Jacob C. Chem. Commun. 2009; 4702
    • 2d Dömling A. Beck B. Eichelberger U. Sakamuri S. Menon S. Chen Q.-Z. Lu Y. Wessjohann LA. Angew. Chem. Int. Ed. 2006; 45: 7235
    • 2e Bobach C. Schurwanz J. Franke K. Denkert A. Sung TV. Kuster R. Mutiso PC. Seliger B. Wessjohann LA. J. Ethnopharmacol. 2014; 155: 721
    • 3a Dömling A. Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
    • 3b Ugi I. Steinbrückner C. Chem. Ber. 1961; 94: 2802
    • 4a Wessjohann LA. Morejón MC. Ojeda GM. Rhoden CR. B. Rivera DG. J. Org. Chem. 2016; 81: 6535
    • 4b Neves RA. W. Westermann B. Wessjohann LA. Beilstein J. Org. Chem. 2011; 7: 1504
    • 4c Neves RA. W. Stark S. Westermann B. Wessjohann LA. Beilstein J. Org. Chem. 2012; 8: 2085
    • 4d Bauer SM. Armstrong RW. J. Am. Chem. Soc. 1999; 121: 6355
    • 5a Morejón MC. Laub A. Westermann B. Rivera DG. Wessjohann LA. Org. Lett. 2016; 18: 4096
    • 5b Hoffmann J. Gorges J. Junk L. Kazmaier U. Org. Biomol. Chem. 2015; 13: 6010
    • 5c Rivera DG. Vasco AV. Echemendía R. Concepción O. Pérez CS. Gavín JA. Wessjohann LA. Chem. Eur. J. 2014; 20: 13150
    • 6a Chatterjee J. Rechenmacher F. Kessler H. Angew. Chem. Int. Ed. 2013; 52: 254
    • 6b Chatterjee J. Gilon C. Hoffman A. Kessler H. Acc. Chem. Res. 2008; 41: 1331
    • 6c Chatterjee J. Rechenmacher F. Kessler H. Angew. Chem. Int. Ed. 2013; 52: 254
    • 6d Wessjohann LA. Andrade CK. Z. Vercillo OE. Rivera DG. Targets Heterocycl. Syst. 2006; 10: 24
  • 7 Coste J. Frerot E. Jouin P. J. Org. Chem. 1994; 59: 2437
  • 8 Neves RA. W. Stark S. Morejon MC. Westermann B. Wessjohann LA. Tetrahedron Lett. 2012; 53: 5360
    • 9a Spallarossa M. Wang Q. Riva R. Zhu J. Org. Lett. 2016; 18: 1622
    • 9b van der Heijden G. Jong JA. W. Ruijter E. Orru RV. A. Org. Lett. 2016; 18: 984
    • 9c Cioc CR. Preschel HD. van der Heijden G. Ruijter E. Orru RV. A. Chem. Eur. J. 2016; 22: 7837
    • 9d Oikawa M. Sugamata Y. Chiba M. Fukushima K. Ishikawa Y. Synlett 2013; 24: 2014
    • 9e Le HV. Fan L. Ganem BA. Tetrahedron Lett. 2011; 52: 2209
    • 9f Pirrung MC. Ghorai S. Ibarra-Rivera TR. J. Org. Chem. 2009; 74: 4110
    • 9g Gilley CB. Kobayashi Y. J. Org. Chem. 2008; 73: 4198
    • 9h Kreye O. Westermann B. Wessjohann LA. Synlett 2007; 3188
    • 9i Linderman RJ. Binet S. Petrich SR. J. Org. Chem. 1999; 64: 336
    • 9j Lindhorst T. Bock H. Ugi I. Tetrahedron 1999; 55: 7411
    • 9k Maison W. Schlemminger I. Westerhoff O. Martens J. Bioorg. Med. Chem. Lett. 1999; 9: 581
    • 9l Keating TA. Armstrong RW. J. Am. Chem. Soc. 1996; 118: 2574
    • 10a White CJ. Yudin AK. Nat. Chem. 2011; 3: 509
    • 10b Han SY. Kim YA. Tetrahedron 2004; 60: 2447