Synlett 2017; 28(18): 2478-2482
DOI: 10.1055/s-0036-1588451
cluster
© Georg Thieme Verlag Stuttgart · New York

Reactivity of Seven-Membered-Ring trans-Alkenes with Electrophiles

Jillian R. Sanzone
Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA   Email: kwoerpel@nyu.edu
,
Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA   Email: kwoerpel@nyu.edu
› Author Affiliations
This research was supported by the National Science Foundation (CHE-1362709). J.R.S. was supported by a Margaret Strauss Kramer Fellowship from the NYU Department of Chemistry
Further Information

Publication History

Received: 10 April 2017

Accepted after revision: 10 May 2017

Publication Date:
21 June 2017 (online)


Published as part of the Cluster Silicon in Synthesis and Catalysis

Abstract

Seven-membered-ring trans-alkenes containing a silicon–oxygen bond reacted rapidly with oxygen gas and electron-deficient alkenes and alkynes to give products with high selectivity. Addition of an electron-donating substituent or incorporating additional strain increased the reactivity by over two orders of magnitude. These results indicate that release of strain is not the only driving force for reactivity.

Supporting Information

 
  • References and Notes

  • 1 Corey EJ. Carey FA. Winter RA. E. J. Am. Chem. Soc. 1965; 87: 934
  • 2 Ziegler K. Wilms H. Justus Liebigs Ann. Chem. 1950; 567: 1
  • 3 Inoue Y. Ueoka T. Kuroda T. Hakushi T. J. Chem. Soc., Perkin Trans. 2 1983; 983
  • 4 Greene MA. Prévost M. Tolopilo J. Woerpel KA. J. Am. Chem. Soc. 2012; 134: 12482
  • 5 Hurlocker B. Hu C. Woerpel KA. Angew. Chem. Int. Ed. 2015; 54: 4295
  • 6 Hoffmann R. Inoue Y. J. Am. Chem. Soc. 1999; 121: 10702
  • 7 Shea KJ. Kim J.-S. J. Am. Chem. Soc. 1992; 114: 3044
  • 8 Inoue Y. Turro NJ. Tetrahedron Lett. 1980; 21: 4327
  • 9 Squillacote M. Mooney M. De Felippis J. J. Am. Chem. Soc. 1990; 112: 5364
  • 10 Poon TH. W. Park SH. Elemes Y. Foote CS. J. Am. Chem. Soc. 1995; 117: 10468
  • 11 Corey EJ. Tada M. LaMahieu R. Libit L. J. Am. Chem. Soc. 1965; 87: 2051
  • 12 Thalhammer F. Wallfahrer U. Sauer J. Tetrahedron Lett. 1990; 31: 6851
  • 13 Steinmetz MG. Sguin KJ. Udayakumar BS. Behnke JS. J. Am. Chem. Soc. 1990; 112: 6601
  • 14 Shea KJ. Kim J.-S. J. Am. Chem. Soc. 1992; 114: 4846
  • 15 Krebs A. Pforr K.-I. Raffay W. Thölke B. König WA. Hardt I. Boese R. Angew. Chem., Int. Ed. Engl. 1997; 36: 159
  • 16 Adam W. Weinkötz S. J. Am. Chem. Soc. 1998; 120: 4861
  • 17 Blackman ML. Royzen M. Fox JM. J. Am. Chem. Soc. 2008; 130: 13518
  • 18 Taylor MT. Blackman ML. Dmitrenko O. Fox JM. J. Am. Chem. Soc. 2011; 133: 9646
  • 19 Tomooka K. Miyasaka S. Motomura S. Igawa K. Chem. Eur. J. 2014; 20: 7598
  • 20 Sanzone JR. Woerpel KA. Angew. Chem. Int. Ed. 2016; 55: 790
  • 21 Santucci JIII. Sanzone JR. Woerpel KA. Eur. J. Org. Chem. 2016; 2933
  • 22 Wilson MR. Taylor RE. Angew. Chem. Int. Ed. 2013; 52: 4078
  • 23 Debets MF. van Berkel SS. Dommerholt J. Dirks AJ. Rutjes FP. J. T. van Delft FL. Acc. Chem. Res. 2011; 44: 805
  • 24 Hart H. Dunkelblum E. J. Am. Chem. Soc. 1978; 100: 5141
  • 25 Moran J. Dornan P. Beauchemin AM. Org. Lett. 2007; 9: 3893
  • 26 Moran J. Cebrowski PH. Beauchemin AM. J. Org. Chem. 2008; 73: 1004
  • 27 Ketone 4 To a solution of diene 1 (0.013 g, 0.08 mmol) and cyclohexene silacyclopropane 2 (0.028 g, 0.13 mmol) in C6H6 (0.48 mL) was added AgOCOCF3 (0.025 mL, 0.030 M in C6H6). After 10 min, benzaldehyde (0.0080 mL, 0.080 mmol) was added, and the reaction vessel was removed from the glovebox and placed under an O2 atmosphere (balloon). After 4 h, the reaction mixture was concentrated in vacuo. Purification by flash chromatography (EtOAc–hexanes = 2:98) afforded ketone 4 as a white solid (0.025 g, 59% over three steps): mp 94–95 °C. 1H NMR (600 MHz, CDCl3): δ = 7.36–7.27 (m, 5 H), 4.97 (d, J = 9.7 Hz, 1 H), 4.72 (dd, J = 10.0, 4.9 Hz, 1 H), 2.86 (dq, J = 9.7, 7.0 Hz, 1 H), 1.21 (dd, J = 14.5, 4.9 Hz, 1 H), 1.12–1.10 (m, 1 H), 1.05 (s, 9 H), 0.93 (s, 9 H), 0.77 (d, J = 7.0 Hz, 3 H), 0.16 (s, 9 H). 13C NMR (125 MHz, CDCl3): δ = 215.1 (C), 142.6 (C), 128.4 (CH), 127.9 (CH), 126.8 (CH), 78.7 (CH), 77.6 (CH), 56.3 (CH), 28.0 (CH3), 27.6 (CH3), 21.7 (C), 20.8 (C), 16.6 (CH2), 14.4 (CH3), 0.1 (CH3). IR (ATR): 1708, 1071, 838 cm–1. ESI-HRMS: m/z calcd for C23H40NaO3Si2 [M + Na]+: 443.2408; found: 443.2410. Anal. Calcd for C23H40O3Si2: C, 65.66; H, 9.58. Found: C, 65.94; 9.33.
  • 28 Warmuth R. Marvel MA. Chem. Eur. J. 2001; 7: 1209
  • 29 Rubottom GM. Vazquez MA. Pelegrina DR. Tetrahedron Lett. 1974; 15: 4319
  • 30 Bartlett PD. Banavali R. J. Org. Chem. 1991; 56: 6043
  • 31 Clark KB. Howard JA. Oyler AR. J. Am. Chem. Soc. 1997; 119: 9560
  • 32 Lambert JB. Tetrahedron 1990; 46: 2677
  • 33 In certain systems, the γ-silyl carbocation is favored over the β-silyl carbocation: Coope J. Shiner VJ. Jr. Ensinger MW. J. Am. Chem. Soc. 1990; 112: 2834
  • 34 The electronic nature of the double bond is important in [4+2] cycloadditions between cyclooctynes and azides. Fluorine-substituted cyclooctynes can react up to 63 times faster than related cyclooctynes: Baskin JM. Prescher JA. Laughlin ST. Agard NJ. Chang NJ. Miller IA. Lo A. Codelli JA. Bertozzi CR. Proc. Natl. Acad. Sci., U.S.A. 2007; 104: 16793
  • 35 Computational studies comparing the strain energy of a trans-oxasilacycloheptene with a cis-oxasilacycloheptene showed that the energy difference was ca. 20 kcal/mol, indicating strain energy does influence reactivity. Details are provided as Supporting Information.
  • 36 Mayr H. Kempf B. Ofial AR. Acc. Chem. Res. 2003; 36: 66
  • 37 Hoffmann R. Woodward RB. J. Am. Chem. Soc. 1965; 87: 2046
  • 38 Sella A. Basch H. Hoz S. J. Am. Chem. Soc. 1996; 118: 416
  • 39 The reactivity of trans-alkenes with quinones also correlates with the reduction potential of the electrophile: Guo X. Mayr H. J. Am. Chem. Soc. 2014; 136: 11499
  • 40 Marshall JA. Acc. Chem. Res. 1980; 13: 213
  • 41 Allgäuer DS. Mayr H. Eur. J. Org. Chem. 2014; 2956