Synlett 2017; 28(17): 2272-2276
DOI: 10.1055/s-0036-1588482
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Direct Synthesis of Aryl Thiols from Aryl Iodides Using Sodium Sulfide Aided by Catalytic 1,2-Ethanedithiol

Hongyu Xue
a   College of Life Science and Medicine, Dalian University of Technology, Panjin 124221, P. R. of China   Email: yjliu85@dlut.edu.cn
,
Bing Jing
a   College of Life Science and Medicine, Dalian University of Technology, Panjin 124221, P. R. of China   Email: yjliu85@dlut.edu.cn
,
Shasha Liu
a   College of Life Science and Medicine, Dalian University of Technology, Panjin 124221, P. R. of China   Email: yjliu85@dlut.edu.cn
,
Junghyun Chae*
b   Department of Chemistry and Research Institute of Basic Sciences, Sungshin Women’s University, Seoul 136-742, South Korea   Email: jchae@sungshin.ac.kr
,
Yajun Liu  *
a   College of Life Science and Medicine, Dalian University of Technology, Panjin 124221, P. R. of China   Email: yjliu85@dlut.edu.cn
› Author Affiliations
We gratefully acknowledge the financial support by the Fundamental Research Funds for the Central Universities (DUT15RC(3)043; DUT17LK23), National Research Foundation of Korea (Basic Science Research Program Fund: NRF2015R1D1A1A01060188).
Further Information

Publication History

Received: 21 May 2017

Accepted after revision: 07 June 2017

Publication Date:
18 July 2017 (online)


Abstract

A copper-catalyzed direct and effective synthesis of aryl thiols from aryl iodides using readily available Na2S·9H2O and 1,2-ethanedithiol was described. A variety of aryl thiols were readily obtained in yields of 76–99%. In this protocol, Na2S·9H2O was used as ultimate sulfur source, and 1,2-ethanedithiol functioned as an indispensable catalytic reagent.

Supporting Information

 
  • References and Notes

    • 1a Hoyle CE. Lowe AB. Bowman CN. Chem. Soc. Rev. 2010; 39: 1355
    • 1b Hand CE. Honek JF. J. Nat. Prod. 2005; 68: 293
    • 1c Roy K.-M. Thiols and Organic Sulfides. In Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH; Weinheim: 2000
  • 2 Leuckart R. J. Prakt. Chem. 1890; 41: 179
    • 3a Newman MS. Karnes HA. J. Org. Chem. 1966; 31: 3981
    • 3b Kwart H. Evans ER. J. Org. Chem. 1966; 31: 410
  • 4 Schoenberg A. Vargha L. Ber. Dtsch. Chem. Ges. 1930; 63: 178
    • 5a Uchiro H. Kobayashi S. Tetrahedron Lett. 1999; 40: 3179
    • 5b Bellale EV. Chaudhari MK. Akamanchi KG. Synthesis 2009; 3211
    • 5c Nose A. Kudo T. Chem. Pharm. Bull. 1987; 35: 1770
    • 6a Reddy GV. S. Rao GV. Iyengar DS. Synth. Commun. 2000; 30: 859
    • 6b Cha JS. Kim JM. Jeoung MK. Bull. Korean Chem. Soc. 1992; 13: 702
    • 6c Chary KP. Rajaram S. Iyengar DS. Synth. Commun. 2000; 30: 3095
    • 7a Testaferri L. Tingoli M. Tiecco M. Tetrahedron Lett. 1980; 21: 3099
    • 7b Testaferri L. Tiecco M. Tingoli M. Chianelli D. Montanucci M. Synthesis 1983; 751
    • 7c Shaw JE. J. Org. Chem. 1991; 56: 3728
  • 8 Crowley DJ. Kosak AL. US 2490257, 1946

    • See reviews on transition-metal-catalyzed synthesis of phenols and anilines from aryl halides:
    • 9a Liu Y. Liu S. Xiao Y. Beilstein J. Org. Chem. 2017; 13: 589
    • 9b Aubin Y. Fischmeister C. Thomas CM. Renaud J.-L. Chem. Soc. Rev. 2010; 39: 4130

      See reviews on transition-metal-catalyzed C–S coupling reaction:
    • 10a Lee CF. Liu YC. Badsara SS. Chem. Asian J. 2014; 9: 706
    • 10b Eichman CC. Stambuli JP. Molecules 2011; 16: 590
    • 11a Sun L.-L. Deng C.-L. Tang R.-Y. Zhang X.-G. J. Org. Chem. 2011; 76: 7546
    • 11b Li Y.-P. Nie C.-P. Wang H.-F. Li X.-Y. Verpoort F. Duan C. Eur. J. Org. Chem. 2011; 7331
    • 12a Jiang Y.-W. Qin Y.-X. Xie S.-W. Zhang X.-J. Dong J.-H. Ma D.-W. Org. Lett. 2009; 11: 5250
    • 12b Xu H.-J. Liang Y.-F. Cai Z.-Y. Qi H.-X. Yang C.-Y. Feng Y.-S. J. Org. Chem. 2011; 76: 2296
    • 12c Rostami A. Rostami A. Iranpoor N. Zolfigol MA. Tetrahedron Lett. 2016; 57: 192
    • 13a Takagi K. Chem. Lett. 1985; 14: 1307
    • 13b Takagi K. Chem. Lett. 1986; 16: 1379
    • 13c Qiao S. Xie K. Qi J.-S. Chin. J. Chem. 2010; 28: 1441
  • 14 Fernández-Rodríguez MA. Hartwig JF. Chem. Eur. J. 2010; 16: 2355
  • 15 Yi J. Fu Y. Xiao B. Cui W.-C. Guo Q.-X. Tetrahedron Lett. 2011; 52: 205
  • 16 Sawada N. Itoh T. Yasuda N. Tetrahedron Lett. 2006; 47: 6595
  • 17 Itoh T. Mase T. Org. Lett. 2004; 6: 4587
  • 18 Palani T. Park K. Song K.-H. Lee S. Adv. Synth. Catal. 2013; 355: 1160
  • 19 Liu Y. Kim J. Seo H. Park S. Chae J. Adv. Synth. Catal. 2015; 357: 2205
    • 20a Zhao D.-B. Wu N.-J. Zhang S. Xi P.-H. Su X.-Y. Lan J.-B. You J.-S. Angew. Chem. Int. Ed. 2009; 48: 8729
    • 20b Tlili A. Xia N. Monnier F. Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 8725
    • 20c Maurer S. Liu W. Zhang X.-J. Jiang Y.-W. Ma D.-W. Synlett 2010; 976
    • 20d Kim J. Battsengel O. Liu Y. Chae J. Bull. Korean Chem. Soc. 2015; 36: 2833
  • 21 General Experimental Procedure for the Synthesis of Aryl Thiols from Aryl Iodides To a test tube containing a magnetic bar was added aryl iodide (1 mmol), copper powder (6.35 mg, 0.1 mmol), Na2S·9H2O (720.54 mg, 3 mmol), and DMSO (2 mL). After flushing with argon, 1,2-ethanedithiol (8.4 μL, 0.1 mmol) was added. The mixture was stirred in the oil bath at 100 °C for 20 h. After cooled to ambient temperature, the reaction mixture was distributed in aq HCl (5%) and EtOAc. The organic layer was separated and washed with water and brine, dried, and concentrated under vacuum. The crude product was further purified by column chromatography using ethyl acetate/n-hexane as eluent to provide the desired aryl thiol. Analytical Data of Representative Compounds 4-Methylbenzenethiol (2a) 19 Yield 97%; white solid. 1H NMR (500 MHz, CDCl3): δ = 7.19 (d, J = 8.1 Hz, 2 H), 7.06 (d, J = 8.0 Hz, 2 H), 3.39 (s, 1 H), 2.31 (s, 3 H). 13C NMR (126 MHz, CDCl3): δ = 135.6, 129.8, 129.8, 126.5, 20.9. 4-Methoxybenzenethiol (2h) 19 Yield 93%; yellow liquid. 1H NMR (500 MHz, CDCl3): δ = 7.18 (d, J = 8.5 Hz, 2 H), 6.72 (d, J = 8.8 Hz, 2 H), 3.70 (s, 3 H), 3.28 (s, 1 H). 13C NMR (126 MHz, CDCl3): δ = 158.5, 132.4, 119.8, 114.7, 55.3. 4-Mercaptobenzoic Acid (2n)19 Yield 99%; white powder. 1H NMR (500 MHz, CDCl3): δ = 7.96 (d, J = 7.5 Hz, 2 H), 7.32 (d, J = 7.6 Hz, 2 H), 3.65 (s, 1 H). 13C NMR (126 MHz, CDCl3): δ = 171.1, 139.8, 130.8, 128.1, 126.1.