Synlett 2017; 28(17): 2325-2329
DOI: 10.1055/s-0036-1588483
letter
© Georg Thieme Verlag Stuttgart · New York

KI/K2S2O8-Mediated α-C–H Sulfenylation of Carbonyl Compounds with (Hetero)Aryl Thiols

Zan Yang
College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. of China   Email: yangtaozcs@126.com   Email: zhoucongsh@126.com
,
Jiao Li
College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. of China   Email: yangtaozcs@126.com   Email: zhoucongsh@126.com
,
Jie Hua
College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. of China   Email: yangtaozcs@126.com   Email: zhoucongsh@126.com
,
Tao Yang*
College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. of China   Email: yangtaozcs@126.com   Email: zhoucongsh@126.com
,
Jianmin Yi
College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. of China   Email: yangtaozcs@126.com   Email: zhoucongsh@126.com
,
Congshan Zhou*
College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. of China   Email: yangtaozcs@126.com   Email: zhoucongsh@126.com
› Author Affiliations
This work was supported by National Natural Science Foundation of China (No. 21476068, 21471053), Innovation Platform Project of Education Bureau of Hunan Province, China (No. 13K101), and Hunan Provincial Innovation Foundation for Postgraduate (No. CX2016B669).
Further Information

Publication History

Received: 04 April 2017

Accepted after revision: 04 June 2017

Publication Date:
13 July 2017 (online)


Abstract

A new and facile KI/K2S2O8-mediated α-C–H sulfenylation of carbonyl compounds with (hetero)aryl thiols was developed for the formation of C–S bond at room temperature. This method provided a simple process for the synthesis of β-keto thioethers in moderate to excellent yields. A variety of carbonyl compounds and (hetero)aryl thiols were tolerated in this reaction.

Supporting Information

 
  • References and Notes

    • 1a Beccalli EO. Broggini G. Martinelli M. Sottocornola S. Chem. Rev. 2007; 107: 5318
    • 1b Li CJ. Acc. Chem. Res. 2009; 42: 335
    • 1c Cho SH. Kim JY. Kwak J. Chang S. Chem. Soc. Rev. 2011; 40: 5068
    • 1d Zhang C. Tang C. Jiao N. Chem. Soc. Rev. 2012; 41: 3464
    • 1e Liu C. Yuan J. Gao M. Tang S. Li W. Shi R. Lei A. Chem. Rev. 2015; 115: 12138
    • 1f Guo X. Gu D. Wu Z. Zhang W. Chem. Rev. 2015; 115: 1622
    • 1g Yang Z. Li J. Hua J. Yang T. Yi M. Zhou C. Synlett 2017; 28: 1079
    • 1h Du H. Tang R. Deng C. Liu Y. Li J. Zhang X. Adv. Synth. Catal. 2011; 353: 2739
    • 2a Chen X. Hao X. Goodhue CE. Yu JQ. J. Am. Chem. Soc. 2006; 128: 6790
    • 2b Lyons TW. Sanford MS. Chem. Rev. 2010; 110: 1147
    • 2c Liao Y. Jiang P. Chen S. Qi H. Deng G. Green Chem. 2013; 15: 3302
    • 2d Ravi C. Mohan DM. Adimurthy S. Org. Lett. 2014; 16: 2978
    • 2e Shen C. Zhang P. Sun Q. Bai S. Abdy Hor TS. Liu X. Chem. Soc. Rev. 2015; 44: 291
    • 2f Yang D. Sun P. Wei W. Meng L. He L. Fang B. Jiang W. Wang H. Org. Chem. Front. 2016; 3: 1457
    • 2g Desnoyer AN. Love JA. Chem. Soc. Rev. 2017; 46: 197
    • 3a Itoh T. Mase T. Org. Lett. 2004; 6: 4587
    • 3b Jammi S. Barua P. Rout L. Saha P. Punniyamurthy T. Tetrahedron Lett. 2008; 49: 1484
    • 3c Fukuzawa S. Shimizu E. Atsuumi Y. Haga M. Ogata K. Tetrahedron Lett. 2009; 50: 2374
    • 3d Wu W. Wang J. Tsai F. Green Chem. 2009; 11: 326
    • 3e Beletskaya IP. Ananikov VP. Chem. Rev. 2011; 111: 1596
    • 3f Arockiam PB. Bruneau C. Dixneul PH. Chem. Rev. 2012; 112: 5879
    • 3g Wang H. Wang L. Shang J. Li X. Wang H. Gui J. Lei A. Chem. Commun. 2012; 48: 76
    • 3h Yuan Y. Guo S. Xiang J. Synlett 2013; 24: 443
    • 3i Wang S. Liu W. Cai Z. Li S. Liu J. Wang A. Synlett 2016; 27: 2264
    • 3j Lin Y. Lu G. Wang G. Yi W. J. Org. Chem. 2017; 82: 382
    • 4a Dumas J. Brittelli D. Chen J. Dixon B. Mokdad H. Konig G. Sibley R. Witowsky J. Wong S. Bioorg. Med. Chem. Lett. 1999; 9: 2531
    • 4b Gazal S. Gelerman G. Ziv O. Karpov O. Litman P. Bracha M. Afargan M. Gilon C. J. Med. Chem. 2002; 45: 1665
    • 4c Zhang L. Fan J. Vu K. Hong K. Brazidec JL. Shi J. Biamonte M. Busch DJ. Lough RE. Grecko R. Ran Y. Sensintaffar JL. Kamal A. Lundgren K. Burrows FJ. Mansfield R. Timony GA. Ulm EH. Kasibhatla SR. Boehm MF. J. Med. Chem. 2006; 49: 5352
    • 4d Pejin B. Iodice C. Tommonaro G. Rosa SD. J. Nat. Prod. 2008; 71: 1850
    • 4e Cychose KA. Wong-Foy AG. Matzger AJ. J. Am. Chem. Soc. 2009; 131: 14538
    • 4f Wang P. Wang X. Dai J. Feng Y. Xu H. Org. Lett. 2014; 16: 4586
    • 4g Yang Z. Li J. Yang T. Zhou C. RSC Adv. 2016; 6: 65775
    • 4h Ji X. Zhou S. Chen F. Zhang X. Tang R. Synthesis 2015; 47: 659
    • 5a Zheng Z. Qi D. Shi L. Catal. Comm. 2015; 66: 83
    • 5b Wang D. Zhang R. Lin S. Yan Z. Huo S. RSC Adv. 2015; 5: 108030
    • 5c Yonova IM. Osborne CA. Morrissette NS. Jarvo EL. J. Org. Chem. 2014; 79: 1947
    • 5d Ravi C. Chandra C. Adimurthy S. Org. Biomol. Chem. 2016; 14: 2282
    • 5e Mohan B. Hwang S. Woo H. Park KH. Synthesis 2015; 47: 3741
    • 6a Chuang GJ. Wang W. Lee E. Ritter T. J. Am. Chem. Soc. 2011; 133: 1760
    • 6b Evans RW. Zbieg JR. Zhu S. Li W. MacMillan DW. C. J. Am. Chem. Soc. 2013; 135: 16074
    • 6c Shang Y. Jie X. Zhou J. Hu P. Huang S. Su P. Angew. Chem. Int. Ed. 2013; 52: 1299
    • 6d Ghosh M. Mishra S. Monir K. Hajra A. Org. Biomol. Chem. 2015; 13: 309
    • 6e Rota F. Benhamou L. Sheppard TD. Synlett 2016; 27: 33
    • 7a Chauhan P. Mahajan S. Enders D. Chem. Rev. 2014; 114: 8807
    • 7b Kemp MM. Wang Q. Fuller JH. West N. Martinez NM. Morse EM. Weiwer M. Schreiber SL. Bradner JE. Koehler AN. Bioorg. Med. Chem. Lett. 2011; 21: 4164
    • 7c Kumar A. Sharma S. Deepak V. Srivastava S. Tetrahedron 2010; 66: 9445
    • 7d Huang K. Ortiz-Marciales M. Stepanenko V. Jesus MD. Correa W. J. Org. Chem. 2008; 73: 6928
    • 7e Chang M. Cheng Y. Lu Y. Org. Lett. 2014; 16: 6252
    • 8a Watile RA. Biswas S. Samec JS. M. Green Chem. 2013; 15: 3176
    • 8b Denmark SE. Rossi S. Webster MP. Wang H. J. Am. Chem. Soc. 2014; 136: 13016
    • 8c Cadu A. Watile RA. Biswas S. Orthaber A. Sjoberg PJ. R. Samec JS. M. Org. Lett. 2014; 16: 5556
    • 8d Zhang Y. Zhu S. Cai Y. Mao H. Zhou Q. Chem. Commun. 2009; 5362
    • 8e Zhou L. Priebbenow DL. Wang L. Mottweiler J. Bolm C. Adv. Synth. Catal. 2013; 355: 2558
    • 8f Truce WE. Knospe RH. J. Am. Chem. Soc. 1955; 77: 5063
    • 9a Vaguer AF. Frongia A. Secci F. Tuveri E. RSC Adv. 2015; 5: 96695
    • 9b Varun BV. Gadde K. Prabhu KR. Org. Biomol. Chem. 2016; 14: 7665
    • 9c Yan G. Borah AJ. Wang L. Pan Z. Chen S. Shen X. Wu X. Tetrahedron Lett. 2015; 56: 4305
    • 9d Dias RM. P. Burtoloso AC. B. Org. Lett. 2016; 18: 3034
    • 9e Wang W. Li H. Wang J. Liao L. Tetrahedron Lett. 2004; 45: 8229
    • 9f Yadav JS. Reddy BV. S. Jain R. Baishya G. Tetrahedron Lett. 2008; 49: 3015
    • 9g Okragla E. Demkowicz S. Rachon J. Witt D. Synthesis 2009; 1720
    • 9h Lin Y. Lu G. Wang G. Yi W. Adv. Synth. Catal. 2016; 358: 4100
  • 10 Siddaraju Y. Prabhu KR. Org. Lett. 2016; 18: 6090
    • 11a Wu Y. Huang B. Zhang Y. Wang X. Dai J. Xu J. Xu H. Org. Biomol. Chem. 2016; 14: 5936
    • 11b Uyanik M. Ishihara K. ChemCatChem. 2012; 4: 177
    • 11c Reddi RN. Prasad PK. Sudalai A. Org. Lett. 2014; 16: 5674
    • 11d Lin Y. Lu G. Cai C. Yi W. Org. Lett. 2015; 17: 3310
  • 12 Procedure for the Synthesis of 2-{Benzo[d]thiazol-2-ylthio}-1-phenylethanone The mixture of acetophenone (1.0 mmol), benzo[d]thiazole-2(3H)-thione (0.5 mmol, 1 equiv), KI (20 mol%), K2S2O8 (0.6 equiv), and DMSO (1 mL) was stirred at r.t. for 24 h. Afterwards, the reaction mixture was washed with aq NaCl (10 ml) and extracted with EtOAc (15 mL, 3×). The obtained top organic layer was dried with anhydrous MgSO4. The mixture was concentrated in vacuo, and the residue was purified by column chromatography on silica gel (EtOAc/n-hexane = 5%) to afford the pure product. White solid (92%). 1H NMR (400 MHz, CDCl3): δ = 8.07–8.05 (m, 2 H), 7.82–7.80 (m, 1 H), 7.54–7.22 (m, 1 H), 7.61 (t, J = 7.6 Hz, 2 H), 7.52–7.39 (m, 2 H), 7.31–7.28 (m, 2 H), 4.97 (s, 2 H). 13C NMR (100 MHz, CDCl3): δ = 192.93, 165.24, 152.81, 135.45, 135.42, 133.81, 128.76, 128.54, 126.02, 124.38, 121.45, 121.04, 40.99.