Synlett 2017; 28(17): 2303-2306
DOI: 10.1055/s-0036-1588495
letter
© Georg Thieme Verlag Stuttgart · New York

Concise Synthesis of a Cyclopentane Intermediate Possessing All Nitrogen Functionalities for Pactamycin

Nobuyuki Matsumoto
Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan   Email: nisikawa@agr.nagoya-u.ac.jp
,
Atsuo Nakazaki
Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan   Email: nisikawa@agr.nagoya-u.ac.jp
,
Toshio Nishikawa*
Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan   Email: nisikawa@agr.nagoya-u.ac.jp
› Author Affiliations
This work was supported by a Grant-in-Aid for Scientific Research (B) (No. 16H04915) and a Grant-in-Aid for Scientific Research on Innovative Areas ‘Chemical Biology of Natural Products’ (No. 23102015) from MEXT. N.M. thanks the Global COE program and the Program for Leading Graduate Schools: IGER Program in Green Natural Sciences from MEXT.
Further Information

Publication History

Received: 23 May 2017

Accepted after revision: 20 June 2017

Publication Date:
27 July 2017 (online)


Dedicated to Prof. Dr. Volker Jäger

Abstract

Pactamycin, a potent antitumor and antimicrobial antibiotic, possesses a densely functionalized cyclopentane core structure. This paper describes the concise synthesis of an advanced intermediate for synthesizing the enantiomer of pactamycin that contains the cyclopentane skeleton bearing all the necessary amino functions with correct stereochemistries.

Supporting Information

 
  • References and Notes

    • 1a Bhuyan BK. Dietz A. Smith CG. Antimicrob. Agents Chemother. 1962; 184
    • 1b Argoudelis AD. Jahnke HK. Fox JA. Antimicrob. Agents Chemother. 1962; 191
    • 1c Bhuyan BK. Appl. Microbiol. 1962; 10: 302

      For the structure determination, see:
    • 2a Wiley PF. Jahnke HK. MacKellar F. Kelly RB. Argoudelis AD. J. Org. Chem. 1970; 35: 1420
    • 2b Duchamp, D. J. In Abstracts, American Crystallographic Association Winter Meeting, Albuquerque NM, 1972, American Crystallographic Association: Buffalo, 1972, 23.

    • For the assignment of the 13C NMR of pactamycin, see:
    • 2c Weller DD. Haber A. Rinehart KL. Jr. Wile PF. J. Antibiot. 1978; 31: 997
    • 3a Cohen LB. Goldberg IH. Herner AE. Biochemistry 1969; 8: 1327
    • 3b Brodersen DE. Clemons WM. Jr. Carte AP. Morgan-Warren RJ. Wimberly BT. Ramakrishnan V. Cell 2000; 103: 1143
    • 3c Dinos G. Wilson DN. Teraoka Y. Szaflarski W. Fucini P. Kalpaxis D. Nierhaus KH. Mol. Cell 2004; 13: 113
  • 4 Kudo F. Kasama Y. Hirayama T. Eguchi T. J. Antibiot. 2007; 60: 492
    • 5a Ito T. Roongsawang N. Shirasaka N. Lu W. Flatt PM. Kasanah N. Miranda C. Mahmud T. ChemBioChem 2009; 10: 2253
    • 5b Lu W. Roongsawang N. Mahmud T. Chem. Biol. 2011; 18: 425
    • 5c Almabruk KH. Lu W. Li Y. Abugreen M. Kelly JX. Mahmud T. Org. Lett. 2013; 15: 1678
  • 6 Iwatsuki M. Nishihara-Tsukashima A. Ishiyama A. Namatame M. Watanabe Y. Handasah S. Pranamuda H. Marwoto B. Matsumoto A. Takahashi Y. Otoguro K. Ōmura S. J. Antibiot. 2012; 65: 169
    • 7a Tsujimoto T. Nishikawa T. Urabe D. Isobe M. Synlett 2005; 433
    • 7b Matsumoto N. Tsujimoto T. Nakazaki A. Isobe M. Nishikawa T. RSC Adv. 2012; 2: 9448

      For synthetic studies from other laboratories, see:
    • 8a Knapp S. Yu Y. Org. Lett. 2007; 9: 1359
    • 8b Malinowski JT. McCarver SJ. Johnson JS. Org. Lett. 2012; 14: 2878
    • 8c Haussener TJ. Looper RE. Org. Lett. 2012; 14: 3632
    • 8d Gerstner NC. Adams CS. Grigg RD. Tretbar M. Rigoli JW. Schomaker JM. Org. Lett. 2016; 18: 284
    • 8e Yamaguchi M. Hayashi M. Hamada Y. Nemoto T. Org. Lett. 2016; 18: 2347
    • 9a Hanessian S. Vakiti RR. Dorich S. Banerjee S. Lecomte F. DelValle JR. Zhang J. Angew. Chem. Int. Ed. 2011; 50: 3497
    • 9b Hanessian S. Vakiti RR. Dorich S. Banerjee S. Deschênes-Simard B. J. Org. Chem. 2012; 77: 9458
    • 10a Malinowski JT. Sharpe RJ. Johnson JS. Science 2013; 340: 180
    • 10b Sharpe RJ. Malinowski JT. Johnson JS. J. Am. Chem. Soc. 2013; 135: 17990
    • 11a Hanessian S. Vakiti RR. Chattopadhyay AK. Dorich S. Lavallée C. Bioorg. Med. Chem. 2013; 21: 1775
    • 11b Sharpe RJ. Malinowski JT. Sorana F. Luft JC. Bowerman CJ. DeSimone JM. Johnson JS. Bioorg. Med. Chem. 2015; 23: 1849
  • 12 We have proposed that the ring contraction (isomerization) of an isoxazoline to an aziridine aldehyde be called the Baldwin rearrangement after its discoverer. See: Baldwin JE. Pudussery RG. Qureshi AK. Sklarz B. J. Am. Chem. Soc. 1968; 90: 5325 ; See also ref. 7(b)

    • For examples of oxime–olefin cycloaddition, see:
    • 13a Oppolzer W. Keller K. Tetrahedron Lett. 1970; 1117
    • 13b Dransfield PJ. Moutel S. Shipman M. Sik V. J. Chem. Soc., Perkin Trans 1 1999; 3349
    • 13c Tamura O. Mitsuya T. Huang X. Tsutsumi Y. Hattori S. Ishibashi H. J. Org. Chem. 2005; 70: 10720
  • 14 Tipson RS. Cohen A. Carbohydr. Res. 1965; 1: 338
  • 15 Deprotection of the acetonide of 14 involved hydrolysis with aqueous TFA followed by deprotection of the resulting trifluoroacetate at the anomeric position with Et3N in aqueous methanol.
  • 16 The stereochemistry of 16b was determined from the NOESY correlation between protons in the C-4 and C-7 positions.
  • 17 8-Azido-7-{[tert-butyl(dimethyl)siloxy]methyl}-4-methyl-9-(tosylamino)-2-oxo-3-oxa-1-azaspiro[4.4]non-6-yl Acetate (21) NaN3 (5.5 mg, 85 µmol) was added to a solution of aziridine 20b (22.2 mg, 42.3 µmol) in anhyd DMF (1 mL) and the mixture was stirred for 36 h at r.t. under N2. H2O (4 mL) was added and the mixture was extracted with Et2O (2 × 2 mL). The organic layers were combined, washed with H2O (3 mL) and brine (3 mL), dried (Na2SO4), and concentrated to dryness in vacuo. The residue was purified by preparative TLC (hexane–EtOAc, 2:1) to give a colorless oil; yield: 21.2 mg (88%), [α]D 26 –61 (c 1.06, CHCl3). IR (film): 3284, 2929, 2858, 2111, 1753, 1226, 1163, 1092, 837 cm–1. 1H NMR (400 MHz, CDCl3): δ = 0.11 (s, 3 H, TBS), 0.12 (s, 3 H, TBS), 0.91 (s, 9 H, TBS), 1.61 (d, J = 6.5 Hz, 3 H, CHCH 3), 1.88 (m, 1 H, TBSOCH2CHCHC), 2.09 (s, 3 H, Ac), 2.39 (s, 3 H, Ts), 3.45 (dd, J = 9, 7.5 Hz, 1 H, N3CHCHNHTs), 3.72 (dd, J = 10, 3.5 Hz, 1 H, TBSOCH AHBCHCHC), 3.89 (dd, J = 10, 4 Hz, 1 H, TBSOCHA H BCHCHC), 4.07 (br t, J = 8.5 Hz, 1 H, N3CHCHNHTs), 4.64 (q, J = 6.5 Hz, 1 H, CHCH3), 4.78 (d, J = 2.5 Hz, 1 H, TBSOCH2CHCHC), 6.01 (br d, J = 9.5 Hz, 1 H, N3CHCHNHTs), 6.32 (br s, 1 H, NH), 7.30 (d, J = 8 Hz, 2 H, Ar), 7.83 (d, J = 8 Hz, 2 H, Ar). 13C NMR (100 MHz, CDCl3): δ = –5.52, 15.2, 18.5, 20.8, 21.5, 26.0, 51.2, 60.0, 62.0, 65.7, 67.2, 77.6, 79.1, 126.8, 129.6, 138.8, 143.5, 157.9, 169.5. HRMS (ESI): m/z [M + Na]+ calcd for C24H37N5NaO7SSi: 590.2075; found: 590.2085.
    • 18a Weymouth-Wilson AC. Clarkson RA. Jones NA. Best D. Wilson FX. Pino-González M.-S. Fleet GW. J. Tetrahedron Lett. 2009; 50: 6307
    • 18b Martínez RF. Liu Z. Glawar AF. G. Yoshihara A. Izumori K. Fleet GW. J. Jenkinson SF. Angew. Chem. Int. Ed. 2004; 53: 1160
    • 18c Sowa W. Can. J. Chem. 1969; 47: 3931